

NPTEL ONLINE CERTIFICATION COURSES

EARTHQUAKE SEISMOLOGY

Dr. Mohit Agrawal

Department of Applied Geophysics , IIT(ISM) Dhanbad

Module 02 : Snell's law, Plane wave reflection and transmission Lecture 04: Boundary Conditions, Types Of Interfaces, Ray Theory, Reflection/Transmission, Snell's law

CONCEPTS COVERED

- ➢ Recap
- > Boundary Conditions
- > Types Of Interfaces
- > Ray Theory
- Reflection/Transmission
- Snell's law
- > Summary

Recap from previous lecture

• The total energy and flux are proportional to the square of the amplitude and the frequency.

Hence, waves of the same amplitude, the higher frequency transports more energy.

- Displacement of the P-wave can be obtained by solving $abla \Phi(x,z,t)$
- Displacement of the SV-and SH-wave can be obtained by solving $abla imes \psi(x,z,t)$ and $abla imes
 abla imes \psi(x,z,t)$, respectively.
- P-and SV waves are coupled as the displacement correspondings to these waves lies in the same plane.
- Displacement corresponding to SH-wave lies in the plane orthogonal to the plane of displacement of SV-and P-wave.

Boundary Conditions

We will discuss about four types of interfaces in seismology, which are as follows.

Types of Boundaries

- Solid-Solid
- Solid-Liquid
- Solid-Free surface (Air)
- Liquid-Liquid

The Free Surface Condition

- This is a good approximation for the Earth's surface
- There will not be any traction on the boundary due to vacuum so the tractions resolved on the boundary are zero.
- The normal vector , the vector is $\hat{n} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ Then by cauchy's stress theorem $\sigma \hat{n} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ This produce zero traction at the free surface $\int \sigma_{11} = \sigma_{13} = \sigma_{13$

Let's talk about other boundary conditions, for this purpose, we will use the gaussian pillbox .

We will integrate the homogeneous equation of motion over the volume of pillbox.

$$\sigma_{ij,j} =
ho \ddot{u}_i \ or \; \sigma_{ij,j} -
ho \ddot{u}_i = 0$$

Then integrate it for box's volume

$$\int_v (\sigma_{ij,j} -
ho \ddot{u_i}) dV = 0$$

Now we can use Gauss divergence theorem to convert one of the terms to a surface integral.

According to this theorem, the outward flux through a closed surface is equal to the integral

volume within the surface of the divergence over the area.

Normal unit vector to the surface

Medium 1 Medium 2

♥ĥ⁻

(1)

In Einstein summation,

So, equation (1) can be written as

$$\int_s u_i n_i dS = \int_v u_{i,i} dV$$

By analogy, we can write,

If we squeeze the pillbox then, thickness \rightarrow 0 and volume \rightarrow 0

C

so,
$$\int_v
ho \ddot{u}_i dV o 0$$
 and $\int_s \sigma_{ij} n_j dS = 0$

Because thickness of the pillbox is zero, the contributions from the top (+) and bottom (-) surfaces have to cancel each other out.

For this to happen, at each point, $\left(\sigma_{ij}n_{j}
ight)^{+}+\left(\sigma_{ij}n_{j}
ight)^{-}=0$

 $n_j^- and n_j^+$ are opposite direction, we can say that ${}^{\sigma}{}_{ij}n_j$ is the same at both sides of the interface . Therefore $T_i = \sigma_{ij}n_j$, tractions must be continuous at an interface.

Solid-Solid Interface

It is also known as welded interface, because two solids are combined at the boundary.

Things should be connected /welded at this interface, so it implies continuity of displacement, so

$$u_i^+ = u_i^-$$

 $T_i^+ = T_i^-$

 x_3

Solid-Liquid Interface

 $\mu=0$ in the liquid, so shear tractions are zero in the liquid. By

continuity they must be zero in the solid boundary too. $T_1=0$

Interface	Boundary Conditions
Solid-Solid	$T^+_i=T^i$
	$u_i^+=u_i^-$
Solid-Liquid	$T_3^+ = T_3^-$
	$T_2=T_1=0$
	$u_3^+=u_3^-$
FreeSurface	$T_i = 0$

$I_{2} = 0$				
$T_3^+ = T_3^-$,	u_3^+	=	u_3^-

Liquid

Solid

 x_3

Ray Theory and Reflection/Transmission

- Ray theory is an approach in which a point on the wavefront is tracked rather than the complete wavefield.
- Ray theory is extensively used due to its simplicity, rapidness and applicability to a wide range of problems
- It is valid both for shallow and deep earth, from industry seismics in a sedimentary basin to the P-waves in the outer core.
- Ray theory is an approximation and it does not work well where heterogeneity or the order of wavelength are less, exists. For examples diffractions, steep velocity gradients etc.

Ray Theory and Reflection/Transmission

Note:

1. If an SH-wave is vibrating parallel to the interface, then it will produce reflected and transmitted SH-wave.

1. P -and SV- waves are coupled to each other, So a P-wave can produce SV-wave and

vice-versa

Ray Theory and Reflection/Transmission

Let us suppose there is a propagating wavefront at times t₀ and

 t_1 . During this period it travels distance Δs .

$$\sin heta = rac{\Delta s}{\Delta x} \hspace{1cm} ext{and} \hspace{1cm} \Delta s = v \Delta t$$
 $\implies rac{\Delta t}{\Delta x} = rac{\sin heta}{v} = p ext{ (ray parameter)}$

Consider apparent horizontal velocity is c_x , is the rate at which wave

travels along the X-direction such as surface of the Earth

Note that:

$$rac{1}{p} = rac{\Delta x}{\Delta t} = c_x$$

$$ext{slowness} = u = rac{-}{v} = s$$
 $ext{then } rac{\sin heta}{v} = u\,\sin heta$

For wavefronts to be continuous across the interface, their

horizontal apparent velocity along the interface has to be

same

$$p_1 = \frac{\sin \theta_1}{v_1} = u_1 \sin \theta_1 = p_2 = \frac{\sin \theta_2}{v_2} = u_2 \sin \theta_2$$
OR

$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2}$$
This is known as Snell's law

wavefronts

 θ_{2}

٧,

Note that ray parameter of the ray remains constant along its path

Wave number vector defines the direction of the ray

It has two components: one along horizontal and another along vertical direction

If c_x and c_z are apparent velocities along horizontal and vertical directions

Note:

- The apparent horizontal velocity is always greater than or equal to the medium velocity, α for P-wave and β for S-wave
- A horizontally propagating wave, with i =90°, has an apparent velocity equal to the medium velocity.
- A vertically incident plane waves arrives everywhere on

the surface at the same-time, so it has infinite apparent

velocity

surface

Slowness vector can be decomposed into vertical and horizontal components

$$ec{u} = (p,\eta) = \left(rac{\sin heta}{v},rac{\cos heta}{v}
ight) = \left(rac{1}{c_x},rac{1}{c_z}
ight) = \left(rac{k_x}{\omega},rac{k_z}{\omega}
ight)$$

Horizontal slowness (p) remains constant for a ray while vertical slowness (n) varies with velocity of the layers.

Also,
$$\frac{1}{v^2} = \eta^2 + p^2$$

or
 $\eta = \sqrt{\frac{1}{v^2} - p^2}$
 $u^2 = \eta^2 + p^2$
or
 $u = \left| \sqrt{\eta^2 + p^2} \right|$

Summary

- For free surface, $T_i = \sigma_{ij} n_j$ tractions must be continuous at an interface.
- For the solid-solid interface $u_i^+=u_i^-,\,T_i^+=T_i^-$ and for the solid-liquid Interface $T_3^+=T_3^-$, $u_3^+=u_3^-$
- If an SH-wave is vibrating parallel to the interface, then it will produce reflected and transmitted SH-wave.
- P -and SV- waves are coupled to each other, So a P-wave can produce SV-wave and vice-versa.
- The apparent horizontal velocity is always greater than or equal to the medium velocity, α for P-wave and β for S-wave and a vertically incident plane waves has infinite apparent velocity.
- Horizontal slowness (p) remains constant for a ray while vertical slowness (η) varies with velocity varies with velocity of the layer.

Snell's law
$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2}$$
 and $\vec{u} = (p, \eta) = \left(\frac{\sin \theta}{v}, \frac{\cos \theta}{v}\right) = \left(\frac{1}{c_x}, \frac{1}{c_z}\right) = \left(\frac{k_x}{\omega}, \frac{k_z}{\omega}\right)$

REFERENCES

- Stein, Seth, and Michael Wysession. An introduction to seismology, earthquakes, and earth structure. John Wiley & Sons, 2009.
- Lowrie, William, and Andreas Fichtner. Fundamentals of geophysics. Cambridge university press,
 2020.
- Kearey, Philip, Michael Brooks, and Ian Hill. An introduction to geophysical exploration. Vol. 4. John Wiley & Sons, 2002.
- https://geologyscience.com/geology-branches/structural-geology/stress-and-strain/
- https://www.wikipedia.org/
- Seismology course, Professor Derek Schutt, Colorado State Univ., USA.

