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CONCEPTS COVERED

⮚ Waves on a String

⮚ Wave Equation

⮚ Energy and Normal Modes
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Goal: To derive the wave equation on a string to help
guide our thinking for the 3-D wave equation.

Waves on a String
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Derivation of the 1-D wave Equation
Assumptions:

1) The string is perfectly uniform, so properties, such as mass per unit 
length (ρ) don’t change in x.

2) The string only moves up and down, in the y-direction, and the y-
amplitude is small

3)  Gravity is ignored (but it’s not too hard to add).

Start with Newton’s Law

Decompose it into the x and y components
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Now consider a small element of the string at time, t

1) If the string is not moving in 
the x-direction, then the forces 
in the x-direction must balance.

2) In the y-direction

3) Here, and 

4) Fy is the sum of the forces
in the y-direction

5) Steps 2 and 4 can be combined to get
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6) Divide this by Fx, but use a
different term for each part of the
equation.

(Recall that Fx is:                                       )

This gives us:

7) Recall that tan is just the ratio of 
the opposite to the adjacent sides for 
angle θ.   In other words,
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8) Substitute the derivative forms of tan into our working equation 

This

then becomes this

9)  Divide through by Δx
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As x -> 0, this is just the 2nd 

derivative.

Hence,

which gives us the 1-D wave 
equation
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Waves on a String

How motion of waves on a  string mimics the wave propagation in the Earth?

This equation gives the relationship
between the time and space derivatives of
the displacement along the string.
This coupling between the two partial
derivatives gives rise to waves propagating
along the string with a velocity v.Thus the
stress in string or earth has clear impact
wave propagation.

Here we are assuming state of the stress in earth, which is quite similar to string with tension ‘τ’.

Using Taylor’s expansion

Fig. 1.4
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Solving the 1-D Wave Equation

The solution is relatively simple:

where or in the notation of the book

Fx or τ represent the tension in the string. 

The equation can be rewritten in terms of v to get:
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Let’s test our solution to the wave equation, and see if y(x+vt) solves 
the equation.   

Now, apply the chain rule:

So, we’ll plug in this solution and 
see if both sides of the equation are 
equal

Since ,

and

Let’s do a substitution: u = x + vt

This gives us a value for the LHS of the equation.
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Likewise, we can do the same for the time-derivatives

In this case, since , .

Hence, 

Taking the second derivative with respect to time, we get:
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Now, we have: and

Let’s plug this into the wave equation

One gets: 

Both sides are equal, which proves that y(x+vt) is a valid solution 
to the wave equation.   You could do the same things with y(x-
vt).
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Principle of Superposition

It can be shown that the sum of two solutions to the wave equation 
is also a solution to the wave equation.

Since a function in the form can readily be decomposed in terms of sine or
cosine waves, this means that solutions to the wave equation can be considered in
terms of superposition of these waves.

So, we will be spending a lot of time looking at waves with one frequency, but with
the understanding that we can create an arbitrary function out of the sum of
harmonic waves of different frequencies.
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Harmonic Wave Solution and Wave Parameters

A useful way to characterize the solutions to the wave 
equation is in terms of harmonic waves.

The wave velocity is:

A harmonic wave thus can be characterized by three parameters, such as:
• Amplitude (A)
• Angular frequency (ω)
• Wavenumber (k)

Here, y(x,t) or u(x,t) is the vertical displacement
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Some properties of a harmonic wave

Consider the real part of the harmonic wave equation, 
for a wave propagating in one direction:                .   

u is constant when the phase,                   , is constant.   

At a given location, x0,                        
will have the same value every time ωt changes by 2π.    

The wave period is characterized by T = 2π/ω or 1/f.

Alternatively, the frequency gives the number of 
oscillations in a given time f = 1/T = ω/2π.   
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Useful Summary of Wave Parameters

Wavenumber may be an unusual concept.   It is the number of wavelengths per unit 
distance, in radians.   

For instance, if the wavelength is 16km for a 8 km/s P-wave, the frequency, f = .5Hz, 
and the wavenumber is pi/8 = ~.4 km-1
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Reflection and Transmission

Consider two strings with different properties—the left 
string has density ρ1 and velocity v1 , and the right string 
has density ρ2 and velocity v2.

y1 y2

For x<0 (the left hand side of the string), the 
displacement can be represented as the sum of the
• Incident wave moving in the + x direction, with 

amplitude A
• The reflected wave, moving in the –x direction, with 

amplitude B. 

A

B
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y1 y2

For x>0 (the RHS of the string), the 
displacement can be represented as 
the transmitted wave, with amplitude 
C.

A

B
C

To get a feel for the movement of these waves, recall that constant phase implies 
Φ = constant, where Φ represents the phase.   

If we assume, for convenience, that Φ=0, then for the negative k case: ωt-kx=0.
This implies ωt = kx

Consequently, as t gets larger, x must get larger for the phase to stay constant. Hence,
ωt - kx implies a wave moving in the +x direction, and ωt+kx would be a wave moving
in the –x direction.
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At x = 0, we can establish two conditions:

1) The string is continuous:                                 

2) The string has continuous       .   To understand this, 
consider if the string had a discontinuous slope at x = 0.   This 
means the 2nd derivative is infinite:

which means

And if tension (Fx) is constant,      will also be constant, which implies    
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But this is the vertical acceleration.   Since 

a discontinuous slope would imply an infinite force in the y-direction

Indeed, any tendency to kink and have a discontinuous slope would be met 
with increased acceleration to reduce the slope.    Hence, we have our 2nd

boundary condition:

With these constraints, and some thinking, we can start to solve the problem.    
Constraint 1 implies:
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For this to work for all t,

Also, at t = 0, 

Now, let’s apply constraint #2.    Note that since ω is constant, then the 
wavenumber k controls the velocity of each string.   Hence, k1a = k1b ≠ k2.

Remove common terms to get

We can put this in terms of the velocity, since 
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Now recall that 

We can cancel out the angular frequencies, and then multiply the LHS by: 

and the RHS 
by: 

This gives 

Since , then 
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Reflection and Transmission coefficients

A little bit of algebra gets us to the reflection coefficient:

Similarly, we can get the transmission coefficient:
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Impedance

• The quantity ρv is called acoustic impedance, and is often denoted as Z,
although sometimes I use I.

• I1= ρ1v1 can equal I2= ρ2v2 even though v1≠v2.

• If I1 > I2 then T12 > 1. As we shall see below, amplitudes are not necessarily
conserved, but energy, and energy flux is.
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Wavelength and Interfaces

Because the angular frequencies of the two strings are the same 

which means
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Energy in a Harmonic Wave

The total energy in a system is the sum of the potential energy (PE) and the kinetic energy (KE). 

Let’s consider the KE first.   From physics, we know that: 

This isn’t too hard to put into our string formalism: 

Thus,
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Kinetic Energy

Over a wavelength, the total KE is (the λ in the denominator is because we are averaging over a 
wavelength)

If , then

and
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Kinetic Energy

To solve this, we’ll first use the identity

So,

Let’s integrate the first part of this equation:

To integrate the second part of the equation 

we’ll use a u-substitution, 
where 

Dr. Mohit Agrawal 

NPTEL



Kinetic Energy

This gives us

Since the quantity 

These two terms are 4π or exactly 2 wavelengths apart, so they will equal each other, and thus

This means that
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Potential Energy

Let’s examine the potential energy in a spring thanks is stretched a distance l. 

where F(l) is the force needed to stretch the spring, 

We know this from Hooke’s Law

So the potential energy in a spring is:
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Potential Energy

With this in mind, let’s consider the stretching of a string.

The change in length, dl, is
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Potential Energy

Since the Maclaurin Series , then for small , we can approximate

which gives us

The force required to stretch the string is the tension, τ, which makes the potential energy 
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Potential Energy per Wavelength

Averaged over a wavelength the PE is

Solving this like we did for the KE, we get

Total energy transported, averaged over a wavelength, is
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Energy Flux

The rate of energy transport, or energy flux, is the energy times the velocity.

Let’s show that energy, and not amplitude, is conserved at an interface.

Consider (for simplicity), the case where the equations for the incident,
reflected, and transmitted waves are as follows:
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Energy Flux

Since the amplitude of the R and T waves are R12 and T12 respectively, the energy fluxes are:

Let’s sum the reflected and transmitted energy fluxes.
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Energy Flux

To keep the math simple, define the impedance as I=vρ, so I1=v1ρ1 and  I2=v2ρ2.   Then,

So,
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Energy Flux

which means energy flux is conserved, even though T can be > 1.

Perhaps more importantly, energy flux, and total energy, goes up as the square
of the frequency. So more energy exists in higher frequency waves.

So,
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Normal Modes of a String

We’ve been looking at travelling waves as a solution to the 1-D wave equation.

A completely valid alternative is to seek solutions to the wave equation with a
cos(ωt) dependence, such that:

For a constant property string, one solution is where the Y(x,ω) term is  

If the string is fixed at x=0, and x=L, then these boundary conditions 
imply the only frequencies that work are 
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Normal Modes on a String

Since the string can only vibrate at these discrete frequencies, these 
frequencies are called eigenfrequencies.    

These eigenfrequencies correspond to the spatial terms of the solution

The complete solution is  

where each term (n) is called a normal mode. 
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Normal Modes on a String

The normal modes are orthogonal, which means
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Normal Modes on a String

It may seem counterintuitive, 
but the normal modes are a 
completely valid and equivalent 
way to model a wave on a string, 
or in the earth.

Here is an example wave that is 
described approximately by 40 
normal modes.
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Principle of Reciprocity

The principle of reciprocity: the equations for displacement of a string,
and seismic waves in the Earth, are such that under the appropriate
conditions, the same displacement occurs if the source and receiver
are interchanged.

This is often used in exploration seismology.
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How motion of waves on a  string mimics the wave propagation in the 
Earth?
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Fig. 1.5
Fig. 1.6
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What have we done?

• We used force balance to derive the 1-D wave eq.

• We did an overview of parameters that describe harmonic waves. The wave
number, k, may be new to you.

• Using C1 continuity, we derived reflection and transmission coefficients.

• We looked at KE and PE averaged over a wavelength.

• An alternative method of solving a differential equation is through normal
modes.
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How does this fit in?

● We will use similar methods to develop and solve the wave equation in 

a continuum.

● The harmonic wave parameters (modified) will be useful for 3-D wave 

propagation.

● Reflection and Transmission coefficients can also be calculate for a 

layered earth.

● For a continuum, kinetic and potential energy will have similar 

functions.

● The earth has normal modes.   These can be used to infer structure or 

create synthetic seismograms.
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