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Welcome to the 3rd lesson of the 6th module which is on Stresses in Beams part 3. In fact in the 

last 2 lessons, on this particular module, we have discussed aspects of the bending stresses in 

beams. In this particular lesson, we are going to look into some more aspects of the stresses and 

we will be looking into the effect of shearing stress in beams. 

(Refer Slide Time: 00:52 - 01:06)  

 

It is expected that once this particular lesson is completed one should be able to understand the 

concept of shear stress in beams of a rectangular cross section, one should be able to derive the 

shear formula for evaluating the shearing stress in a beam subjected to loads and one should be 

in a position to evaluate shear stress in beams of rectangular cross sections for different loading.  
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Hence the scope of this particular lesson includes recapitulation of the previous lesson, the 

concept of shear stress in beams of rectangular cross section, derivation of equation for shear 

stress in beams and examples for the evaluation of shear stress in beams. We will be looking at 

some examples which we know and we will see how to compute the value of the shearing 

stresses in a beam which is subjected to a load. Let us look into the questions which were posed 

last time. 
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What is the impact of bending stress in arriving at a size of a beam? Last time, we had discussed 

that the flexible formula or the bending formula is given by this particular expression that Sigma 

= -MY/I. As you know M is the bending moment, Y is the point at which we are trying to 

evaluate the stress and the distance from the neutral axis; ‘I’ is the moment of inertia.  



When we are talking about the symmetrical section, we will be dividing it into two halves 

because the positive bending moment will be of the same magnitude. We have written the 

absolute value of the bending moments as xY/I. In this particular expression, Sigma is the stress 

which is allowed in this particular member which is a material characteristic.  

 

It means that if we know the allowable stress of that particular material then we know the stress 

limits of that section. The maximum bending moment Mmax can be evaluated from the external 

loading that is acting on the beam member and we have seen how to calculate the bending 

moment at different sections. If we draw the bending moment diagram then we will know at 

which location the maximum bending moment occurs and therefore we will know Mmax and 

Sigma.  

 

These two parameters I and Y basically are dependent on the cross sectional shape of the 

particular beam member. So in I/Y, ‘I’ is the moment of inertia and Y is the distance of the point 

where we are evaluating the stress from the neutral axis which is Y. This I/Y is nothing but 

Mmax/Sigma. We know that from the loading Sigma and from the materially allowable stress, we 

can get the value of I/Y and from this particular numerical value of I /Y, we can select a 

particular section.  

 

We generally designate I/Y by Z and if we can select a member of this Z value, then if we go for 

a section which  has a higher Z value than the Z required, then the section will be able to 

withstand the bending moment that is occurring because of the load. That means if we select a 

member which has the I/Y value larger than we are getting from this expression M/σ, then the 

member will be in a position to withstand this particular load but if we provide a section for 

which the Z value is less than I/Y, then naturally the stress level will go beyond the capability of 

that particular material and the material will fail.  

 



Let us suppose the member is unsymmetrical with respect to x axis as we had discussed last time. 

If we have a cross section which is symmetrical with respect to Y axis but unsymmetrical with 

respect to x- axis, then this Y value will be different from the neutral axis for two ends and we 

can designate it as Y1 and Y2. Correspondingly, we will have two values of I/Y, we can call 1 as 

Z1 which is equal to I/Y1; other one will be Z2 which is I/Y2 smaller than Y Y1 and Y2 which 

have the same I. 

 

We will have the larger value of Z and if we choose a particular section then that particular 

section will be able to withstand the stress. We will have to decide whether it is a symmetrical 

section or an unsymmetrical section with respect to x axis and accordingly we have to find out 

the value of I/Y. Correspondingly, we have to select a particular section which satisfies this 

particular requirement. This bending stress has a great impact in selecting a particular sectional 

configuration of a member where we will have to find out the size.  
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The next question is what is the relation between curvature and the bending stress in a beam? We 

have seen the bending equation which is M/I = E/ρ = Sigma/Y where M is the bending moment, 

I is the moment of inertia, E is the modulus of elasticity, Row is the radius of the axis of the 

beam, Sigma is the bending stress and Y is the distance of the point where we are evaluating the 

stress from the neutral axis and the normal stress gets generated because of the bending in the 

particular section.  

 

If we take this particular relationship E/Row = -Sigma/Y, then we get Sigma = -EY/Row and 

Y/Row. This is how the stress is related to the curvature through this parameter E and Y. We can 

evaluate this at a particular point with respect to the neutral axis. The third question was what is 

meant by section modulus.  
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In fact, we have said that Z is a parameter which is I/Y and this is what we call section modulus. 

The ratio of moment of inertia of section to the extreme fiber distance from the neutral axis of 

the section is known as the section modulus. If I is the moment of inertia and Ymax is the extreme 

distance from the neutral axis of the out of fiber then I/Ymax = Z.  
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In the previous two lessons we have computed the values of the bending stress. That means when 

beam members are subjected to a stress result which is a bending moment for that we could 

evaluate the value of the normal stress because of such a bending. As you have noticed that when 

beam members are subjected to loads, not only are they subjected to a bending moment but at 

location they are subjected to shear forces.  

 

In some zones where the bending is associated with shear force we have to compute the value of 

the normal stress through the bending equation as we have done and we need to evaluate the 

value of the shearing stress as well. In this particular lesson, we are going to look into how to 

compute the value of the shearing stress at a particular location where we know the value of the 

shearing force for the external loading that the member is subjected to.  

 

 

 



Let us look into this particular figure where we have taken a part of the beam segmented which is 

subjected to the loading. This is the positive shear force acting on this particular phase and this 

member is of a rectangular cross section having depth 8 and width 5 and we assume two aspects 

over here. One is that the shear stress is parallel with the shear force at that particular cross 

section and we also assume that the shear stresses are uniformly distributed across the width of 

the beam.  

 

It is reasonable to assume that across the width of the beam, the shear stress is uniform otherwise 

there could be a variation of the shear stress along the depth of the beam but at a particular point 

along the width, we assume that the shear stress is uniform. We assume two aspects: one is that 

the direction of the shear stress is in line with the shearing force which is acting at a particular 

cross section and the distribution of the shear stress along the width is uniform. For example, if 

we take out a small segment from this particular beam, then we get the segmental size which is 

here.  

 

Along the width, the shear stress is uniform as we have assumed at the moment and we have the 

complementary. As we have noticed earlier, if we take a section and if we have verticals here 

then we have horizontals here as well which we call as a complimentary. This is the positive 

shear stress which we have on the particular phase and consequently we have the horizontal 

shearing stress which is the complementary shear stress.  

 

Note that if you take this particular element closer to the top surface where there is no other 

element and the shearing stress on the top surface is 0, at the top point since the horizontal shear 

stress is 0, the vertical shear stress at the extreme also is 0. At the top and at the bottom the 

shearing stress is 0 at +h/2.  

 

 



(Refer Slide Time: 13:05 - 14:43) 

 

Let us evaluate what is the magnitude of the shearing stress in terms of the sectional parameters. 

Before we really go into the evaluation of the shearing stress, you can think of a small 

experiment. Take a number of small beams which are supported on supports and these beams 

individually are racing one after another. We apply a load on to the top of this particular beam 

and it is expected that it is undergoing deformation in this particular format as it is shown over 

here.  

 

Since they are not connected with each other, the bottom part of this particular top beam will be 

undergoing extension or tension and the top fiber of this particular beam will be undergoing 

compression and there is expected to be some amount of slippage. If we say that the frictional 

resistance is small then there will be a substantial change in the length between these two 

surfaces.  

 

 

 



This indicates that if we could hold all these three segments together by applications of glue or 

nailing, then the whole system would have to act as one unit. This indicates that some amount of 

stresses are acting at the interface between this element and this is what is horizontal shear stress 

which retains these three segments together if they are tied together and they can resist the load 

in terms of the stresses.  

(Refer Slide Time: 14:43 - 18:41) 

 

Let us see how to compute the value of the shearing stress in a beam. Consider a segment of the 

beam which is loaded and let us say these are two sections at a distance of dx. Let us call this 

section as ‘aa’ and this as bb and on phase ‘aa’, we have a shear force V and the bending 

moment M. On the right phase, we have the shear force V + dV and moment as M + dM. We 

expect that from ‘aa’ to bb over dx distance as we move, there is a change in the shear force and 

the bending moment. 

 

 

 

 



Let us separate out this particular element and look into the stresses. This is the stress 

distribution which is shown, this is corresponding to the bending stress that the normal stress is 

acting in the beam and here we have considered only M and M + dM. There will be stresses 

because of the shearing action as well but since we are interested at this moment in computing 

the value of the horizontal shear stress, let us keep the vertical shear stress apart. So we are 

looking only at the stress because of the bending moment only.  

 

Let us consider a small segment of this particular beam which is at a distance of say y1 from this 

particular neutral axis and let us separate out this particular segment and look into the stresses. 

Here we have the normal stress which gets generated because of the bending moment M + dM. 

On this side we have the normal stresses which are getting generated because of the bending 

moment M and at this particular cross section of this particular member, we will have a 

horizontal shear which is acting at this phase.  

 

There are verticals here on these phases, which we are not taking into account at the moment. 

Take the cross section of the beam at this particular section ‘aa’, where the width is b and depth 

is h and the distance from the neutral axis is h/2 and we are considering a section which is at a 

distance of Y1 from the neutral axis. This is the section which we are looking into and the 

section at bb is a rectangular one having width b and depth h which is the same configuration. 

We are considering this particular segment.  

 

If we consider a small area dA then the force which will be acting is Sigma (dA) and we can 

compute this Sigma from the expression as we have learned in terms of bending. Since we are 

considering only the bending moment acting in this particular section; the stress Sigma due to 

bending is MY/I which is loaded into the flex. This particular force F1 will be the stress 

multiplied by the area of this particular segment and on this side the force F2will be the stress 

which is generated because of the M + dM multiplied by this segmental area which will give us 

F2.  



In this particular element, we have force F1, we have force F2 and we have force F3. If we take 

the equilibrium of these forces in the horizontal direction, we have F1 - F2 - F3 = 0. How do we 

calculate F1, F2 and F3? Here you note that the force F1 gets generated because of the bending 

moment,  My/I multiplied by the element area dA and the segment is from y1 up to h/2 which 

gives us the value of F1. 
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Likewise the value of F2 = Integraly1 to the power of h/2 - (M + dM) (Y)/I (dA)                                    

Again it is integrated from y1 to h/2 and we get the value of F2. If we write down the equilibrium 

equation which is F1 - F2 - F3 = 0 and thereby it gives us F3 = F1 - F2 and F3 is the force which 

we are trying to find out. If we substitute F1 and F2, we get F1 = Integraly1 to the power of h/2 – 

M(y)/I (dA) + Integraly1 to the power of h/2 – (M + dM) Y/I (dA) and we get F3 and MY/I gets 

cancelled. So, we are left with dM /I y1 to h/2 integral y dA and this particular parameter integral 

y dA we designate as Q Q as equal to integral y dA. In this particular case, it is from y1 to h/2and 

F3.  

 

 



As you can observe from the previous one that F3 is acting at the section of this particular beam 

segment wherein the width of the beam is b and the length we have considered as dx. We have 

taken the dx segment from the beam of width b; the area over which the shear is uniformly 

distributed is v (dx). If Tao is the shearing stress, then the force that is acting at that particular 

cross section is Tao(v) (dx) stress multiplied by the area F3. That is why it is written as Tao (b 

dx) and hence if we equate these two we get a relationship and the moment Tao b dx is                                                                          

F3, = dM/I Integraly2 to the power of h/2 dA which we have designated as q and Tao is basically 

equal to dm/dx (I/b) (Q).  

 

You can recognize this particular parameter dM dX dM dX as = V which is the shear force. The 

rate of change of the bending moment along the length is equal to the shear force which is I (b). 

So Tao from this particular expression is V (Q/I) (b). This is the expression for the horizontal 

shear stress where Tao is equal to the vertical shear force V, where Q the area is the moment of 

the area which is above the section where we are trying to calculate the shearing stress. We are 

trying to calculate the shearing stress in the section which is at a distance of y1 from the neutral 

axis and the area above y1 from y1to h/2 is the segmental area and the moment of that particular 

area with respect to the neutral axis will give us the value of Q. 

 

We know the vertical shear force V, we can compute the value of Q, we can find out I as the 

moment of inertia of the section with respect to the neutral axis V which is the width. We can 

compute the value of the shearing stress and as you can observe from this particular expression 

that at a particular cross section VI and b these three parameters are constant or the same. The 

only parameter which is varying is Q because Q depends on y which is the distance from the 

neutral axis. Hence along the depth of the beam the shear stress will vary. Shear stress depends 

on Q and Q in turn is dependent on the distance y.  

 

 

 



We can compute the value of the horizontal shear stress at a particular section. As we have seen 

that the horizontal shear stress is complimentary to the vertical shear stress. The vertical shear 

stress also will be equal in magnitude of that horizontal shear stress. So once you compute this 

expression VQ/ Ib it is the same for the vertical shear stress as well.  

(Refer Slide Time: 23:56 - 24:56) 

 

From this particular shear formula which we have just derived, we find that the expression for 

the shearing stress Tao = VQ/Ib and this can be used to evaluate shear stress at any point in the 

cross section of a rectangular beam. A rectangular beam is a beam having a rectangular cross 

section. The term Q is the first moment of the cross sectional area above the level at which we 

are looking for the shear stress and for a particular section.  

 

The shear stress varies with the parameter Q because this parameter is constant for a particular 

section. The only parameter which varies is Q and Q is varies with respect to y1. Hence we have 

the shear stress along the depth which varies and we get the distribution of the shear stress on the 

depth. 
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Let us see how the shear stress varies across the depth. We have obtained the value of the Tao 

shearing stress which is VQ/Ib. Now Q for this particular beam as we have seen is integral. 

Supposing in this particular rectangular section where the width is b and height is h for this 

beam, the neutral axis divides the section into two hubs. We would like to find out the shear 

stress across this particular section which is at a distance of y1 from the neutral axis. Hence this 

is a segment which is under consideration, which is above the point where we are computing the 

shearing stress.  

 

If we compute the value of Q for this particular section, Q is equal to integral. For dA, if we take 

a small strip over having width di = b (y) and y varies from y1 to h /2. This is b/2 (y) to the 

power of 2 and y dy is y to the power of 2/2 and y to the power of 2 is h to the power of 2/4 - y1 

to the power of 2. So, this is the value of Q and Tao = V/Ib b/2  h to the power of 2/4 - y1 to the 

power of 2 and ‘b b’ gets cancelled and we get V/2 I (h) to the power of 2/4 - y1 to the power of 

2.  

 



Note that the shearing stress Tao varies parabolic-ally across the depth; it varies with y1 to the 

power of 2. When y1 = 0, we get the maximum value of Tao. That implies that at the neutral 

axis, we get the maximum value of the shearing stress and y1 becomes h/2 + h/2 or – h/2 and the 

value of the shearing stress becomes 0.  

 

As we have noticed earlier that at the top and the bottom of the beam, the value of the shearing 

stress is 0. Let us plot the shear stress distribution where at the top and bottom, the shear stress is 

0 and over the depth it varies parabolic-ally and at the neutral axis, we have the maximum value 

of shearing stress. What is the magnitude of this maximum value? Let us say Taomax = V/2 I (h) 

to the power of 2 /4 and let us write down that Tao = V h square/8I. Now ‘I’ for this particular 

rectangular section, is bh to the power of 3/12.  

 

After substitution we get Vh to the power of 2/8 bh to the power of 3(12). So, h to the power of 2 

gets cancelled and h is 43 and we have 2 and 3/2 V/b (h) which is nothing but the cross sectional 

area. We write this as ‘a’ and the maximum value of the shearing stress in a rectangular beam is 

equal to what we call as Taomax corresponding to the maximum shear force Vmax and 3/2. Here 

Vmax/a will give us the value of Taomax and as you can see that across the depth, the shear stress 

varies for the rectangular beam in a parabolic manner.  

 

At the neutral axis, we get the maximum shear stress and at the extreme ends, the shearing stress 

is 0 and the magnitude of the maximum shear stress is 3/2/a. As we assumed in the beginning 

that although the shear stress varies across the depth, along the width we assume that the 

shearing stress is constant. That means that at this particular point, we get the value of the 

shearing stress along the width.  

 

 



This particular value is constant, as we had assumed in the beginning two aspects: one is that the 

shear stress acts along the direction of the shearing force and the shearing stress at the particular 

point is uniformly distributed across the width. Here one aspect to remember is that we really do 

not bother about the sign of the stress. As such we consider that the direction of the shearing 

stress is along the direction of the shear force. From the bending moment and on the shear force 

diagram, we know the direction of the positive or negative shear. Accordingly, we take the 

direction of shearing stresses as well with this background.  
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What are the steps that we need for evaluating the shearing stress at a particular point? First of all 

we need to find out the vertical shear force V in the cross section where we are trying to find out 

the particular shear stress. That means that at a particular point where we are evaluating the shear 

stress, we will have to find out in which section that particular point is and at that particular 

section, we have to calculate the value of the shear force and we can carry these out by drawing 

the shear force diagram.  

 



Once we draw the shear force diagram in the length of the beam at different points, we know the 

values of the shearing force and the point where we wanted to evaluate the shearing stress. We 

would like to find out where that particular point lies and what the magnitude of the shearing 

force is. 

 

Secondly in the cross section, we will have to locate the neutral axis and we will have to 

compute the moment of inertia about this neutral axis. Then we will have to compute the value of 

Q which is the first moment of the area of the section above or below the point where we are 

trying to find out the shear stress.  

 

Let us suppose we want to find out the sheer stress in a particular section. We concentrate on the 

area where we are trying to find out the shear stress either above or below that particular segment 

and we take the moment of that area with respect to the neutral axis which gives us the value of 

Q. Once we know Q we get I V and b is the width of the beam which gives us the shear stress 

from this particular expression which is VQ/Ib. Then we can find out the value of the shear stress 

at that particular point with this background. 

 

Let us see how to evaluate the shear stress and the bending stress at a particular point in a beam 

having different cross sections. This is the example which I had given last time where the cross 

section of the beam is like an inverted u; this particular section is symmetrical with respect to y-

axis but is unsymmetrical with respect to the horizontal axis. Hence we will have to compute or 

locate the position of the centroid of this particular section so that we can find out the position of 

the neutral axis.  
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Fortunately in this particular problem, the values are given, the location of the neutral axis is 

indicated or the location of centroid is known which is 84 mm from the top of the cross section 

and the moment of inertia of the neutral axis is given as 75(10 to the power of 6) mm to the 

power of 4. This particular beam is subjected to a concentrated load at this part and over this 

length there is a load of W. We need to evaluate the value of W so that the bending stresses are 

60 MPa in tension and 100 MPa in compression.  

 

We will have to find out the maximum value of load that we can apply in the beam so that the 

tensile stress does not go beyond 60 MPa and the bending compressive stress does not go beyond 

100 MPa. If we have to satisfy these two criteria then what is the value of W that we can apply 

on this beam? To do that let us first find out where the maximum bending moment and the 

maximum shear force occur. Here we are dealing with only bending stress, so we can know 

where the maximum bending moment is and we can compute the bending stresses.  

 

 



This particular beam is supported on a hinge over here and roller on this particular end. So, we 

will have a vertical reactive force R5 and a horizontal reactive force HB and a vertical reactive 

force RC. Since we do not have any horizontal force HB = 0, we will be left with RB and RC and 

the values of RB and RC. If we compute RB + RC = W + 4 plus four times (+4W) we get 5W. If 

we take the moment of the courses with respect to B, we can get the value of RC and 

consequently, B.  
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If we compute the values of RB and RC, we get RB as equal to 3.5 W and RC = 1.5 W. Let us plot 

the shear force diagram and if we take a cross section over here and take the free body of the left 

part, then we have the shear force and the bending moment. Here we have the load W and since 

at this particular segment we do not have any other load V is equal to W. We have a positive 

shear from A to B and that is what is indicated over here and the magnitude of that positive shear 

is equal to W V which is equal to plus W over here.  

 

 

 



Let us take a free body diagram of this beam and cut the beam of this particular section and take 

the free body of this left part. We have a reactive force RB, we have the load W and we have the 

shear force V and the bending moment M. The load is distributed over this particular segment 

and let us call this particular distance as x. So, V + RB - W -W (x) = 0 and V = -RB + W + W(x) 

and RB = 3.5 W. Let us try to find out the shear force at any segment end beyond B.  

 

Let us say that at distance C when x is 4 M, this is 4 W + 5 W and RB = 3.5 W. Here V = 1.5 W 

and this is the shear force at the end C and at point B. If we take Wx = 0, RB = -3.5 and W is W. 

This is -2.5 W, at point B, it is -2.5 W and at point C, it is 1.5 W. Since it changes from (-) to (+) 

somewhere along the length, the shear force is 0. If the expression for shear is 0,  

V = -RB (+) (-) W + Wx V = 0 and it gives us RB = -3.5 W. So, -3.5W + W = -2.5 W and that 

gives us -2.5 W= 2.5 W(x) = 2.5 W and W gets cancel and x = 2.5. It indicates that at a distance 

of x = 2.5, the shear force is 0 and it changes sign from negative to positive and here the value is 

1.5 W.  

 

As we know that when the shear force is 0 at the corresponding point, we will get a value which 

is maximum in the bending moment. Let us compute the value of the bending moment for 

different segments and take the moment from this particular free body diagram. At this particular 

free body we see that M = W(x) and when x = 2 M = M and W are in the same direction, M = - 

W(x) where x is equal to 2 meters and M = -2W and the magnitude of this moment is 2W.  

 

At this particular point again, the shear force is 0 and we get a change in the shear from a 

positive to a negative sign. Here we expect some higher value of the bending moment, as we 

have seen that the maximum bending moment occurs either where the shear force is 0 or the 

point where shear force changes its sign from the negative to the positive or the vice versa.  

 

 



At this particular point M + W is acting in the same direction and W (x) + 2 – RB (x) + W (x to 

the power of 2)/2 = 0. The bending moment M = RB (x) - W x to the power of 2/2 - W (x) + 2 

and if we substitute the value of x = 2.5,where the shear force is  0 we get the magnitude of M as 

1.125 W and this is the maximum positive bending moment that occurs in this particular beam. 

We have 2 maximum values of the bending moment, 1 is the positive maximum, another is the 

negative maximum, the maximum positive bending moment = 1.125 W and the maximum 

negative bending moment is 2 W along the length of the beam. 

 

Once we plot this bending moment diagram, it is clear that at two locations one is the maximum 

positive bending moment and at the other point we have the maximum negative moment. We 

have to compute the values of the stresses in the beam corresponding to these two values of the 

positive and the negative bending moment and then we will have to take a decision on what 

maximum load we can apply on this particular beam. Let us compute the value of the stresses 

corresponding to these two bending moments. 
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We have obtained that the maximum positive bending moment is 1.125WkNm and the maximum 

negative moment is 2 W kNm. If we have the negative bending moment or the negative bending 

moment sign, this causes tension at the top and compression at the bottom. Let us calculate the 

bending stress Sigma which is MY/I and I of this particular section is 75(10 to the power of 6) 

mm to the power of 4. The stress which will be acting at the top for this negative moment is the 

tension and tensile stress is 60 MPa.  

 

Thereby for the first case we have 60 = M2W kNm(10 to the power of 6) Nm and Y is the 

neutral axis from the top distance which is 84mm because maximum tensile stress will occur at 

the top fiber and divided by I it is 75(10 to the power of 6) MPa. From this, if you compute the 

value of W, the value of W is 76.8kN and this is one value of W which you get corresponding to 

the maximum tensile stress corresponding to the maximum negative bending moment.  

 

The correspondingly allowable compressive stress is 100 MPa and 100 corresponding to this 

moment is 2W (10 to the power of 6)(116) which is the bottom fiber. The fiber distance from the 

neutral axis is 116/I which is 75(10 to the power of 6). From this, if you compute the value of W, 

we get W = 32.33 Mpa. Corresponding to this value of the bending moment which is 2W, the 

maximum negative bending moment, we get the tensile stress at the top and the compressive 

stress at the bottom and corresponding to this limiting value of the tensile stress and the 

compressive stress we get the two values of W which is 26.8 kN and 32.33 kN.  

 

If we have this particular load applied on this beam, the stress level intension will exceed 60 and 

as a result, the beam will fail. So, we will have to limit ourselves to this load value of 26.8 kNm. 

Before we take a decision on this particular loading, we will have to check up with respect to the 

stresses that develop with respect to this positive bending moment. Let us compute the value of 

the stresses that developed because of the positive bending moment which is of magnitude 

1.125W.  



If we calculate the value of the stress, the positive bending moment which is of this kind will 

cause a compression at the top and tension at the bottom. If we compute the stress corresponding 

to the positive bending moment, the compressive stress at the top is 100 = 1.125 W (10 to the 

power of 6) Nm multiplied by the distance of the top fiber from the neutral axis which is 84/I and 

we have 75(10 to the power of 6).  

 

From this, if we calculate W the value of W comes as 79.4 MPa, much of kN. Correspondingly 

to this particular moment, if you compute the stress at the bottom which is the tensile stress 

which is 60 = 1.125W  106 into the distance of the bottom fiber from the neutral axis which is  

116/I = 75  106. From this, if you compute the value of W, comes as 34.5 kN. Out of these 2 

values, we find 34.5 kN is the low value and because if we apply 79.4.  

 

Naturally the stress level here will exceed and the member will fail. We have obtained four 

values; one is 26.8 kN and 32.33 kN. In the earlier case, corresponding to the maximum negative 

moment and corresponding to the positive moment, we have 79.4 kN and 34.5 kN. Out of these 

four values, we find that 26.8 is the lowest value and this is the value which we will have to 

apply on the beam member so that all the other stresses are within limits.  

 

Let us suppose that we apply a load of more than 26.8 kN. Corresponding to the other cases the 

stress level in other values will exceed hence we will have to apply the minimum possible W 

which we have evaluated out of these four cases and that is the maximum load that we can apply 

on the beam so that the beam functions safely and carries the load as indicated in the beam.  

 

 

 

 



(Refer Slide Time: 47:36 - 50:24) 

 

Take the example which corresponds to the one which we have discussed. The example deals 

with the aspects of shear stress that a simply supported beam is subjected to on a uniformly 

distributed load of 10 kNm including its own weight. Determine the normal and shear stress at 

point C and at this particular point, we will have to find out the value of the normal stress which 

is generated due to bending and the value of the shear stress.  

 

The point C is at a distance of 150mm from the bottom fiber that means, this is the position of 

the neutral axis because it is symmetrical. The point C is somewhere along this length which is 

50mm from this neutral axis. We will have to compute the normal stress and the shearing stress 

and also we have to find out the value of the maximum normal and the maximum shear stress. 

Naturally to compute the value of maximum normal and the maximum shear stress, we will have 

to know at which point along the length of the beam you have the maximum bending moment 

and the maximum shear force. For the value of the maximum bending moment and the maximum 

shear force we will have to draw the bending moment and shear force diagram.  

 



Correspondingly you can find out where the maximum bending moment and the maximum shear 

stress is occurring. This particular end is on hinge and we have the vertical and the horizontal 

reaction which is RA and HA. You have the vertical reactive force RB over here and you have to 

compute the value of RA and RB and the HA = 0 because you do not have any horizontal force in 

this particular member.  

 

This particular member is symmetrically loaded with symmetrical supports as we have seen 

earlier. That mean you have a uniformly distributed load and the reactive values will be equal. 

Here RA is equal to RB and that is equal to the uniformly distributed load 10 multiplied by the 

length of the beam by 2 = 15 kN. 

 

The reactive values will be equal to 15 kN and in fact we can evaluate as we have done earlier. 

So, RA and RB = 10(3) and if we take the moment of the forces with respect to one of the 

support, we can get the value of one of the reactions. These are the reactive values; HA = 0 RA = 

15 and RB =15. Let us look into the shear force and the bending moment diagram and this 

particular beam along the length so that we can compute the value of the stresses.   

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 50:24 - 57:10)   

 

 We have obtained RA as 15 and RB as 15. If we take a free body diagram of this particular 

member on the left hand segment we have the support reaction RA and on these we have the 

shear force V and the moment M. So, V + RA = 0 and V = -RA and we have 15 kN negative as 

the shear force over here. Since there are no other loads acting on this particular beam member 

we have V- at this particular segment which is at a distance of x and we have a uniformly 

distributed load also. So, we have -RA + 10kN(x); so at x = 0, V is RA and we have a shear force.  

 

As we go along the length the value of x changes and consequently there is a change in the shear. 

When x = 1/2 length which is 1.5 then the shear force becomes 0 and at the central point the 

shear force  cross is the base line and goes to the other side and becomes a positive  shear over 

here. If you take the value of x as 3m then you get the value of V = +15 and from -15 to +15, at 

the central point it becomes 0 which is because of the symmetrical loading. 

  

 

 



We have seen it earlier that if you have a simply supported beam subjected to a uniformly 

distributed load then 1/2 the total load is on one support and gradually it becomes 0 at the center 

and goes to the other end. Also if you compute the bending moment M the value of the bending 

moment M = RA (x) – W x to the power of 2/2, RA =15. So, 15(-W) is 10 and 5 x to the power of 

2. At the center where x = 1.5 if you compute the value of the bending moment it is 11.25 kNm. 

That is the maximum bending moment that we get corresponding to the 0 shear force. We will 

have to find out the maximum bending stress and the maximum shearing stress. 

 

From this particular diagram we can see that the maximum value of the bending moment is  

11.25kNm and the maximum value of the shear force which is acting at the support is 15kN and 

we have to compute the value of the bending stress and the shear stress at point C. The maximum 

value of the bending moment at point C = 6.25kNm and the value of the shear stress at point C is 

10kN.  

 

First let us calculate C at C and the bending stress is My/I and at C the moment is 6.25kNm. We 

get 6.25 (10 to the power of 6) (y) which is at a distance of 50 from the neutral axis because this 

is 150 from the bottom. So, we have 50/I where I = 100 (200 to the power of 3)/12 and if we 

compute the value of the Sigma we get 4.7MPa. If we compute the value of the shearing stress at 

this particular point Tao = VQ/Ib. Now we know that v is 10kN at this particular section Q = a y 

bar or integral ydy ydA.  

 

We will have to take the segment above the place where we are evaluating the shear stress. We 

have to compute this particular segment and the segment area is 100(50) and Q = 100(50) which 

is the area and it is own cg is 25 from the top. From the neutral axis it is 75 so this multiplied by 

75 is Q and I again is 100(200) to the power of 3/12 and b is 100. If you substitute this, you get 

the value of Tao = 0.5625 MPa and this is the value of the shearing stress that you get at point C.  

 



Corresponding to the maximum value of the bending moment and the maximum value of the 

shear force if we compute the stresses, we get the bending stress Sigma again as My/I and Mmax 

= 11.25(10 to the power of 6) and y is the extreme point where the maximum value is 100. 

Correspondingly, 100(200 to the power of 3)/12 gives us the value of the bending stress. If we 

compute this we get 16.875 MPa for a rectangular section.  

 

The maximum shear stress Taomax = 3/2 Vmax / area and Vmax here is 15 kN and the area is 

100(200). If we substitute the values, the maximum shear stress comes to 1.125 MPa and at point 

C we can compute the value of the bending stress, the normal stress and the shearing stress from 

this particular diagram.  

 

(Refer Slide Time: 57:10-57:58)   

 

We have another problem where in the beam which is shown over here, we will have to find out 

the stress at a point which is 30mm above the bottom of the beam at section C. That means that 

we will have to compute the value of the shearing stress at this particular point and at this 

location which is at a distance of 30mm from the bottom.  



Here the cross section is symmetrical and with respect to the vertical axis. Here we have 2 

rectangular components joined together and the neutral axis is located at a distance of 62.5mm 

from the bottom fiber. We need not calculate the shear force of the bending moment diagram as 

such. 

(Refer Slide Time: 57:58 - 58:24) 

 

From the shear force diagram we can compute the value of the shear stress. At this particular 

location as the value of the shear force is equal to 6.67kN and correspondingly if you calculate 

the value of the shear stress which is 6.67(10 to the power of 3) this is V (Q)/Ib and if we look 

into b in this particular case it is 100. So, if we compute the value of the shear stress Tao = 

6.67(10 to the power of 3) (Q) = 100 because this is the section which we are looking into. This 

is 100(30) and this is 62.5-15 which is 47.5/ I(b) which is 100 and if we compute this we get 0.5 

Mpa.  

 

 

 

 



(Refer Slide Time: 58:24 - 59:00) 

 

 (Refer Slide Time: 59:00 - 59:19) 

 

There is another problem where a beam is subjected to two concentrated loads and you have to 

compute the maximum value of b so that the bending stress does not exit 60 MPa and shearing 

stress does not exit 10 Mpa. We will look into this particular problem next time.  

 

 



(Refer Slide Time: 59:19 - 59:39) 

 

To summarize this particular lesson, we have recapitulated the concepts of the previous lesson, 

we have looked into the concept of shear stress in beams with rectangular cross sections, we 

have looked into the derivation of equations for the shear stress in beams and we have looked at 

some examples to evaluate shear stresses in beams.  

(Refer Slide Time: 59:39 - 59:57) 

 



The questions given for you are: what are the assumptions made in deriving the shear formula? 

What is the limitation of shear stress formula? What is the value of shear stress in a cantilever 

beam subjected to a moment at its tip? We will provide answers for these questions in the next 

lesson.  

 


