
Strength of Materials 
Prof: S.K.Bhattacharya 

Department of Civil Engineering 
Indian institute of Technology 

Kharagpur 
Lecture no 21 

Lecture Title: Torsion-IV 
 

Welcome to the 4th lesson of the 4th module which is on torsion part 4. In the previous 3 lessons 
on torsion, we have seen several examples of what happens to a bar when it is subjected to a 
twisting moment and this twisting moment could be in a bar which is of solid circular shaft or 
could be in a bar which has a cross section which is tubular in form. That means there is 
hollowness in the shaft. We have also seen how the stresses and the deformation are generated if 
these bars are used for transmitting mechanical power to some other devices. Now we are going 
to look into some more aspects of torsion in this lesson. 
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It is expected that once this particular lesson is completed one should be able to understand the 
concept of tensile stress and failure pattern due to torsion.  
Due to the twisting moment we have seen the shear stress that gets generated and we have the 
maximum stress on the periphery or the surface of the bar. Then we will look into what are the 
values of the maximum normal stresses and what is the consequence of those normal stresses in 
the bar?  
 
Secondly, one should be able to understand the effect of torsion in an indeterminate system. So 
long we have discussed aspects of the determinate system, that means if the twisting moment 
acts in a bar, then we can evaluate the resisting twisting moment from simple equilibrium 
equations. We are going to look into the systems where, by using equilibrium equations alone, 
the internal resisting twisting moment cannot be determined. So, as we have seen in the past the 
systems where we cannot evaluate the internal forces using equilibrium equations alone are 
indeterminate systems. Now for such indeterminate systems, if twisting moment acts, then what 
are the consequences? We will be looking into that in this particular lesson and finally we will 
evaluate stresses and deformation in circular bars due to torsion.  
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The scope of this particular lesson includes the aspects of the previous lesson as we will go 
through the answers of the questions. Then we will evaluate the normal stress due to torsion and 
its consequences and evaluation of stresses and deformation in indeterminate systems due to 
torsion. Then we will look into the examples for evaluation of stresses and deformations in bars 
of circular cross sections.  
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Let us look into the answers of the questions which we had posed last time. Now the first 
question posed was; if a bar made of a material which cannot withstand tension is subjected to 
torsion then what will be the effect? As we have seen that when we test a bar under axial pool, it 
undergoes extension and the bar which undergoes a large extension we call the ducktail material. 
Whereas when we pull the bar, it does not elongate much and because of the tensile stresses, it 



breaks or fails. We call such a kind of material as a brittle material. If we use a material which is 
a brittle kind of a material and if it is subjected to torsion there will be a tensile normal stress; 
then what is the consequence of that?  
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Suppose we have a bar which is subjected to a twisting moment of this form. Here this particular 
twisting moment is the positive moment as we had defined earlier. These are the kinds of stresses 



that will be generated on the surface which is the twisting moment in the form of pure shear. Let 
us try to find out the value of the normal stress corresponding to that.  
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Here because of this shearing stress (Refer Slide Time: 05:06) this is a positive shear, this is 
Sigma positive axis and this is Tao positive axis. If we plot that since normal stress is 0, shearing 
stress value is over here and for the complementary part, we have normal stress 0 shearing stress 
over here. 
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If we plot the Mohr’s circle corresponding to this, then this is the value of the maximum normal 
stress which you call as Sigma 1 and this Sigma 1 is of magnitude equivalent to again the Tao. 



This magnitude being Tao, Sigma 1 = Τ. So the maximum normal stress also is Tao. Now this 
particular point is at an angle of 90 degrees from the reference plane which is this. See the 
Mohr’s plane. Now with reference to this it is at an angle of 45 degrees where the direction of 
normal stress will occur and perpendicular to this surface is the plane along which the failure is 
expected to occur.  
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If we look into that it is the positive value which is occurring and this is the plane 45 degrees 
with respect to the x axis and perpendicular to this plane is the failure line and this is the plane 
along which it will fail. Now if we take the bar in which   we have the torsion acting in this form 
then again corresponding to this, if we plot the Mohr’s circle, we will have the Sigma axis on this 
side and Tao axis over here. Now this direction of shear stress being negative ,we will have the 
point over here, the complementary point will come over here and if we plot the Mohr’s circle 
again, the normal stress is going to be Sigma 1here and which  is equal to Tao. 
 
This point will act in a clockwise direction with reference to the reference plane. So, this is the 
reference plane. Normal to this is the particular line and if we go 45 degrees in the clockwise 
direction then this is the direction of the normal stress Sigma 1 and perpendicular to this, is the 
failure line along which the failure occurs. Now this can be demonstrated using a very simple 
experiment.  
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Let us say that we take a piece of chalk which is a kind of a brittle material and in fact if we 
apply a twisting moment for the first case which is in the anticlockwise direction then the failure 
we get is in this form as we have seen. This is the line which is inclined at an angle of 45 degrees 
and look into this particular line which is 45 degrees as we have seen in the first case. If we 
perform a similar kind of experiment though this time we apply a twisting moment in a 
clockwise direction as we have seen in the second case then you see the kind of failure that you 
have obtained which corresponds to the second case. This is a simple experiment to demonstrate 
that when a twisting moment acts into the bar, a failure line occurs along the perpendicular 
direction of the direction of the stress which is the failure plane.  
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This is the failure line. This bar is over here. Let us look into the second question. What is the 
relation between power and the torque?   Then because of the twisting moment, the tensile stress 
which gets generated on the surface causes failure which is perpendicular to the direction of the 
normal stress. 
Now the second question is: what is the relation between the power and the torque when a shaft 
is subjected to a twisting moment?  
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Now in the last lesson that we had looked into, a power is generally defined as the rate at which 
work is done. When we apply a twisting moment to a shaft, then the work done, ‘W’ may be 
defined as the torque which is of constant magnitude which is multiplied with the angle of 
rotation Psi. Power then can be written as equal to the time derivative of the work done, the rate 
at which the work is done. Now w is T psi which is ddt of T psi. Then t being constant this is T 
times d psi dt and d psi dt is the angular speed which you have defined as omega. So, T times 
omega equals the power where omega is defined in terms of radians per second.  
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Now let us look into some aspects which we had discussed last time. We generally write power 
in terms of a watt which equals to the twisting moment which is in Newton meter and the omega, 
angular speed which is in radian per second.  
 
Frequency which we express as one revolution per second and for one revolution that we have 
seen it has to undergo 360  = 2pi radian. So we can write the angular speed omega as 2 pi f.  
Now suppose we substitute for omega as we have seen, p = T times omega. For omega if you 
write 2pi, then power = 2 pi fT where p is in watt, f is in cycles per second or revolutions per 
second or in hertz. Now sometimes frequency is used in terms of r p m which is   revolution per 
minute and designated by the term n.  
Then n by 60 which is revolution per minute converted in seconds = f.  
So, n = 60 × f and thereby the power p =2pi star n T/60 where t is in Newton meter again and n is 
rpm, revolution per minute.  
 
Sometimes we defined the power of the equipment from which the power gets transmitted 
through the shaft in terms of the horse power which is in fps unit. You should know the 
relationship between the horse power and what it corresponds to in SI units. One horse power is 
equal to 746 watts approximately and 550 foot pound per second.  Given the relation and given 
the values of the power in terms of horse power or in watt, we can write down in terms of watt 
and then we can compute the values of the torque. So these are the relationships between the   
power and the torque and the corresponding units which are being used for defining the power.  
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Now the last question which was posed was: how will you evaluate stresses and deformation in 
circular bars for indeterminate systems?  
As we have discussed so long, we were looking into the systems of the bars where the bar is 
fixed at one end and subjected to the twisting moment or if you have a shaft which is fixed at one 



end, may be subjected to non uniform torsion at different points, we could evaluate the values of 
the internal resisting twisting moment by employing the equations of equilibrium.  
 
If we take the free body diagram, we can evaluate the values of the internal resisting twisting 
moment from it. Now if we go for a system in which the equilibrium equations alone are not 
adequate to evaluate this internal resisting twisting moment, then those systems are no longer a 
determinate system.  If we come across such an indeterminate system, then what will be the ways 
by which we can evaluate the internal resistance twisting moment?  
 
Now one such example is; supposing you have a bar which is fixed at both ends and then it is 
subjected to a twisting moment, then what will be the stresses in the bar or what will be the 
deformation in the bar because of this twisting moment? 
If we evaluate this particular problem, we cannot solve it by using equations of equilibrium 
alone.  
As we have seen in the past, a bar which is an indeterminate one for evaluating the axial stress 
and the strain would have us resort to the equations for compatibility. Here also for an 
indeterminate system, we will have to generate additional equations from the equations of 
compatibility. So once we have the equations of equilibrium and equations of compatibility, then 
we will be in a position to evaluate the internal resisting twisting moment from which we can 
compute the value of stresses and the deformation.  
Let us look at how we can carry that out.  
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Let us look into a system where a bar or a shaft has a different diameter.  
Let us say this diameter (on the left) is d1and the diameter here (on the right) is d2 and it is 
clamped at this particular end as well as it is clamped at this end. Now if this is clamped and is 
subjected to a twisting moment, (let us call this as T0) then what will be the values of the 
twisting moment at these ends since it is clamped and also what will be the stresses and the 
deformations in this particular zone?  



Now we can write down the reactive twisting moment like this.  
 
(Refer Slide Time: 15:53) 
 

 
 
The positive twisting moment as we have defined is that when the twisting moment is in 
anticlockwise direction in the direction of the vector, notation or the direction of the twisting 
moment is towards the thumb and that is what has been shown over here. The twisting moment 
acts over here which is T0. If that vector direction acts in this particular shaft, then what are the 
reactive twisting moment at these two ends? They are in the opposite direction which is in a 
clockwise form and let us call this point as a and this point as b and accordingly let us call this as 
twisting moment at a and twisting moment at b.  
 
(Refer Slide Time: 16:06 - 16:55) 
 

 



Obviously then the twisting moment T0 will be distributed in this reactive twisting moment 
which is TA and TB. So, T0 = TA and TB which is the equation of equilibrium. The external 
twisting moment which acts in the shaft gets equilibrated by the support twisting moment TA and 
TB and so T0 = TA +TB.  This is the equation of equilibrium. We can see from this particular 
expression that TA and TB are the two unknown parameters and we have only one equation. 
From one equation, you cannot solve the two unknown parameters. You need an additional 
parameter to be brought in. 
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We consider a case as we have done in the past for an indeterminate system. Let us remove this 
particular support from this particular shaft. Now if we remove this particular support then 
because of the twisting moment, T0 acts. Let us call T0 the rotation of the shaft. Let us say that 
the rotation which it undergoes at this particular end (if we call this rotation as Theta1 which is at 
end B) is caused by the twisting moment T0.  
 
Let us remove this twisting moment. Let us apply the resistive twisting moment which is TB at 
this end and this TB also is going to cause a twisting moment over Theta2. This particular 
support B is fixed in position and so, it is expected that there will not be any rotation because of 
the twisting moment. That net rotation at support B = 0. Theta1 which we get corresponding to 
the twisting moment T0 and Theta2 which we get corresponding to the resistive twisting moment 
TB should be 0.   
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It means that if we write Theta1 + Theta2 = 0 and then if we write Theta in terms of a twisting 
moment T then we get another set of equation. You get equation 2 and this which is equation 1.  
We have 2 equations now and we have 2 unknown parameters TA and TB. Then we can solve for 
TA and TB. An additional equation has been generated from the deformation compatibility in this 
particular case and we call this as a compatibility equation.  
 
So, for an indeterminate system in fact, we need the equations of equilibrium to be written and 
we need equations of compatibility to be written which is the function of the rotation Theta. 
Then we write the torque displacement relation so that we get this compatibility equation in 
terms of the twisting moment T. Then we have two equations from which we can compute the 
unknown values TA and TB.   
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Let us look into another kind of a system in which we apply a twisting moment. Let us say that 
we have a solid bar, of diameter d1 which is inserted within a tube. Let us call this tube as 1 and 
this tube as 2. This is one side of the cell and this is the other side which is the circular one. A 
circular tube is there within which we have a solid shaft inserted. On one end it is clamped and 
on the other end we have put a plate which is connected to both the tubes on the solid shaft. Now 
if the whole assembly is subjected to a twisting moment, then what are the consequences? 
 
Since both the ends are fixed naturally and you have two elements; one is a tubular shaft, another 
one is a solid shaft and both the elements are subjected to a twisting moment in a combined 
form. We like to find out what the share of this twisting moment is between the two elements, 
the tubular shaft and the solid shaft. There are two twisting moments that will be shared by these 
two elements and then how do we evaluate those twisting moments?  
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Let us suppose we take of this particular rigid plate from this and take out the shaft over here. 
This is the internal solid shaft which is subjected to a twisting moment the pictorial notation of 
which is this. Let us call that twisting moment as T1.  
That means the external twisting moment T which acts in the composite system is shared by the 
shaft and the tube. The twisting moment which acts in the central solid shaft is T1. The twisting 
moment, which acts in the tubular form, is T2.  
We have T1 and T2 and the diameter of the internal shaft is d1 and the external diameter or the 
outer diameter of the tubular shaft is d2. 
 
We will have to find out the values of T1 and T2. If we write down the equilibrium equation then 
the external twisting moment T = T1 + T2 because this external twisting moment T is to be 
shared by the solid shaft and the tubular shaft. Now again, we have only one equilibrium 
equation and we have two unknown parameters T1 and T2. From this single equation we cannot 
evaluate the values of T1 and T2.  
 
We need an additional equation to be generated so that we can evaluate these 2 unknown values 
T1 and T2 and this additional equation can be generated if we take the compatibility into account.  
What is the compatibility criterion in this particular case? Here, you have the composite system 
where you have an external tube in which you have a solid shaft and both are enclosed within 2 
fixed supports. 
When this is twisted, the whole composite system undergoes rotation and also since both the tube 
and the solid shaft are under the constraint of these two plates, they are expected to undergo the 
same amount of rotation. So, the rotation in the solid shaft and the rotation in the tubular shaft 
should be identical and then we have the compatibility from which we can generate the 
additional equation.  
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If we say that this is the rotation Theta1 that this particular solid shaft undergoes because of the 
twisting moment T1 and if we say Theta2 is the twisting moment or the rotation that this tubular 
shaft undergoes because of the twisting moment T2 then we can say that Theta1 = Theta2 and 
this is the compatibility equation. This is our equilibrium equation where you say that T = T1 + 
T2 and this is our compatibility where Theta1 = Theta2.  
 
As we know that T by J = Tao by rho = G Theta/L. So, Theta in terms of t is nothing but TL/GJ. 
The value of Theta is in terms of T = TL/GJ. We can write that down as  
Theta1 = T1 and L is the same because both are within the same confinement. The length of the 
solid shaft and the length of the tube are identical and let us call that as L. So, it is T1L /G and let 
us call this as J1 which is the polar moment of inertia of the solid shaft and likewise Theta2 = 
T2L/GJ.  
 
If we have the same material or J2 and if both the tube and the solid shaft are made out of the 
same material, then the shear module as value g will be identical but if this tube and the solid 
shaft are of different material, then you will have two different values of g and correspondingly, 
we will use G1 and G2 to make it more general. If we equate this Theta1 and Theta2, we can get 
a relationship between T1 and T2. Therefore the second equation will be generated from this 
compatibility.  
 
Equation1 and equation 2 can give us the values of T1 and T2. So, these are the 2 equations T = 
T 1 + T2 and Theta1 = Theta2 or T1LGJ1 = T2LGJ2 will give us the values of T1 and T2. That is 
how for an indeterminate system when they are subjected to a twisting moment, we make use of  
the equation of equilibrium the equation of compatibility and then the torque displacement 
relationship to arrive at   what will be the equations from which you can evaluate the unknown 
twisting moment or the internal resisting moment. 
 



Once we know this twisting moment, then we can take the free body diagram of the whole shaft 
at any point and then correspondingly, we can find out what are the internal resisting twisting 
moments and from which we can compute the value of the shear stresses which are generated 
from the twisting moment and the angle of a twist because of this twisting moment.  
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Let us look into the whole of what we have done so long for the determinate and indeterminate 
system. Now when we talk about the determinate system the equations which we need are the 
equilibrium equations and equilibrium equations alone are adequate to evaluate the internal 
resisting twisting moment and all we need is the torque displacement relations or torque rotation 
relationship from which we can compute the value of the stresses. 
 
The geometry of deformation, as we have seen, which is in terms of the rotation   varies and 
shear strain varies linearly from the axis of the shaft. We have seen that   Gamma = d Theta/d x 
times rho. It varies linearly with respect to the radius. From the center as it goes, it varies linearly 
and shear strains are related to shear stress which is the constitutive relationship. With these 3 
aspects we can solve any determinate system.  
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In the case of the indeterminate systems, they are also identical except that you need equations of 
equilibrium. You need to look into the geometry of deformation and of course the shear strains 
are related to the shear stress which is the constitutive relationship. Now apart from this, these 
alone are not adequate to give the equations for evaluating the internal resisting twisting 
moment.  In case of the indeterminate system, we need another criterion which is the equation of 
compatibility and from this equation of compatibility we can generate another equation from 
which you can solve the internal resisting twisting moment and an internal twisting moment at 
any point of the shaft in terms of the support moment.  
 
Now you are in a position to say that if a bar is supported at one end and subjected to a twisting 
moment, then we can compute a twisting moment accordingly at any point whether it is uniform 
torsion or non uniform torsion or whether the shaft is a uniform one, non uniform and the 
stresses corresponding to the angle of rotation.  
If the bar is not supported on one point alone but is supported at two points or two sides then 
when it is subjected to a twisting moment, the equations of equilibrium alone are not adequate to 
evaluate the internal resisting twisting moment and we need the spot of equations of equilibrium 
to generate an additional equation from which we can compute the values of internal resisting 
twisting moment.  
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Let us look at some examples to demonstrate this. The first example is the one which I had posed 
last time and we discussed this aspect last time that the shafts are generally used to transmit 
power and in this particular case, a tubular shaft is designed to transmit 120kw power at a 
frequency of 15Hertz. The inside diameter of the shaft is to be three fourths of the outside 
diameter. If the outside diameter is d, then the inside diameter is  ¾(d) which is .75 times d. If 
the allowable shear stress is 45 mpa then what is the minimum required diameter, d? What will 
be the minimum required outside diameter, d? Let us look into this particular example.  
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Here the value of power is given as 120kw and the frequency at which the shaft operates is 
15Hertz. As we have seen p = twice pi f T. There is a relationship between the power and the 
torque. Power here is in watt and since it is given in kilo watt this is 120 multiplied by 10 to the 
power of 3 which is equal to 2 multiplied by pi multiplied by 15 multiplied by T. T is the 
twisting moment which is in Newton meter. So, T =120 multiplied by 10 to the power of 3 
divided by 30pi and this gives us a value of 1273.24 Newton meter. This is the value of the 
twisting moment that has been generated because of the power driven which is 120kw at a 
frequency of 15Hertz.  
 
Given that the outer diameter of the shaft d outer is equal to d and consequently d inner is equal 
to ¾ of the outer diameter which is 0.75 times d if these are the values of the shaft, d and 0.75 d. 
Then the value of the polar moment of inertia J is equal to pi by 32 d0 (outer) to the power of 4 – 
di (inner) to the power of 4 which is equal to pi by 32. Now d outer here is d so we have d to the 
power of 4 minus (0.75d) to the power of 4. This gives us a value of 0.684 pi by 32 multiplied by 
d to the power of 4 which is the value of J. This is the value of the polar moment of inertia J.  
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We know that the stress is limited to 45MPa. So, T by J is equal to Tao by rho. Now we will 
have to find out the diameter d. T = 1273.24 multiplied by 10 to the power of 3 Newton 
millimeter divided by 0.684 which is what we have computed times pi times d to the power of 4. 
So, this (the numerator) gets multiplied by 32 which is equal to Tao. It is limited to 45MPa and 
rho is outer diameter by 2 and 2 divided by d.  
 
So from these if you compute the value of d you get 59.51 mm. This is the   diameter of the shaft 
that we will have to use so that the stress is within 45 MPa.  
If we have to use a tubular shaft which transmits power at 120kw and at 15 horse frequency then 
the external diameter of the shaft that is necessary is equal to 59.51mm if we have to restrict the 
value of the shearing stress within 45MPa.  



If we use the diameter more than that then the stress level will be lower but if we go a diameter 
lower than this value, then the stress level will go higher and as a result the shaft will fail. Let us 
look into the second example which is of the category that we have discussed today, which is an 
indeterminate system.  
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You have a shaft A B and C with solid circular section. It has 2 parts which is state 1 and the first 
part has the diameter of 16mm, the second one has a diameter of 20mm and it is held again in 
rotation at A and at C. Assuming that the allowable shear stress in the shaft is 60 MPa, Tao is 
limited to 60 MPa. Then, what is the maximum torque that may be applied at B?  
 
The torque T can be applied at B so that the shear stress does not go beyond 60 MPa. Here since 
these two ends are clamped, the resisting twisting moment will be TA and TC. Obviously, from 
the equilibrium equation we know that T = TA + TC. TA and TC being two unknown parameters 
from single equation we cannot evaluate that so, it is a problem of again the indeterminate 
system.  
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Let us look into this free body diagram. Take the free body of the shaft, the twisting moment that 
we will have to evaluate is T which acts at B and the   resistive twisting moment at end A and C 
let us say, TA and TC. Then our equilibrium equation gives us T = TA + TC. Note here that this 
twisting moment which acts here is a positive twisting moment; this is the pictorial notation of 
the twisting moment and the support twisting moment which we have taken is in the opposite 
direction TA and TC and this is the equilibrium equation T = TA + TC.   So, this is equation 1. 
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There is another equation we can generate from the compatibility criteria.  



This is subjected to a twisting moment here at T and note that this acts at this point B. (Refer 
Slide Time: 37:19) Now once we remove this particular support, it becomes a determinate 
system. If we cut across here and take the right hand free body and here there is no twisting 
moment from part B to C, it is free of twisting moment. But between A and B we have the 
twisting moment, T. 
 
Let us try to find out the rotation here. Let us call this as Theta1 which will be   occurring 
because of the twisting moment T at C and in this particular free end at C because of the resistive 
twisting moment TC, there will be another rotation and let us call this rotation as Theta2. If we 
combine Theta1 and Theta2 together since this end is fixed, it cannot undergo any rotation. So, 
Theta1 + Theta2 should be equal to 0.  
 
This is the equation of compatibility and then if we write Theta1 and Theta2, from this particular 
free body diagram, Theta1 is going to be equal to T, when it is subjected to the action of T over 
the length AB and so, we get T.LAB by G.JAB. This is the polar moment of inertia of the part 
AB. Now there are 2 different diameters. JAB and JBC are different.  
When this particular shaft is subjected to a twisting moment at C undergoing a rotation of 
Theta2, the value of Theta2 will be equal to the twisting moment TC.  
For part AB, it will be length AB by G times JAB. Also for the part BC, there will be a rotation. 
So, it will be plus TC multiplied by length BC divided by G.JBC and note here that the twisting 
moment T, acts in the positive direction.  
 
As we have defined earlier that when it moves in an anticlockwise direction the direction of the 
twisting moment is in the positive x direction. So, the rotation correspondingly also is positive 
and TC acts in the opposite direction which is a negative. So, Theta2 as a whole is a negative. 
Theta1 + Theta2 = 0 and we get  
Theta1 = Theta2. From this we can find out the relationship between TC and T and we already 
have a relationship between T, TA and TC. From these we can evaluate TA and TC. Now let us 
compute these values.  
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Now we have seen, T = TA + TC. This is our equation of equilibrium. 
Equation of compatibility gives Theta1 + Theta2 = 0. This is the second equation.  
We will have to apply the torque rotation relationship where Theta1 is equal to T times length 
AB by G.JAB. We have seen just now that the rotation Theta1 occurs because of the twisting 
moment T which is over length AB times G.JAB and Theta2 correspondingly is equal to TC 
times LAB divided by G.JAB plus TC LBC by G.JBC. 
 
This is the total twisting moment which is negative according to the sign convention which we 
have used. Now if we write down this Theta1 + Theta2 = 0 as our equation of compatibility then 
we have T.LAB by G.JAB is equal to TC.LAB by G.JAB plus TC.LBC by G.JBC. This is the 
second equation after writing the relationship between the angle of twist and the angle of 
twisting moment and we have equation of equilibrium which is T is equal to TA + TC.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 42:59 - 43:11)  
 

 
 
So if we now substitute the numerical values then we have that T length AB is 125 and G gets 
canceled from either side. Now before we go into this let us compute the value of the polar 
moment of inertia J for the 2 point. 
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Now J for AB which is of diameter 16 is equal to pi by 32 times 16 to the power of 4 which is 
equal to 6434mm to the power of 4 and JBC is equal to pi by 32 times 20 to the power of 4 which 
is equal to 15708mm to the power of 4. If we substitute T times length AB we get 125 by J (ab) 
which is 6434; this is equal to TC and length AB which is 125 by 6434 plus TC multiplied by 250 



divided by 15708 and we get T times 0.194 = TC times 0.0353 and this gives a value of TC  as 
0.55T.  
 
Once we know this from equation 1, we get TA = 0.45T. Now we know the values of TA and TC 
in terms of T. Now if we have to restrict stress to a value, we need to evaluate the values of the 
twisting moment. What will be the value of the twisting moment T if we restrict the stress Tao to 
60 MPa? The stress is to be limited to 60 MPa and correspondingly, we will have to find out the 
value of Τ. 
 
(Refer Slide Time: 45:35 - 46:05) 
 

 
 
Now T by J is equal to Τ by rho. Τ is equal to T rho by J and for the AB part let us say it is 
restricted to 60 = TA multiplied by 8 which is the rho because 16 is the diameter divided by JAB 
which is 6434. Since we are using the twisting moment TA over the part AB then with the 
twisting moment acting at TA, if we take a section in between AB, then the resistive moment also 
will be TA. Over the part   AB we compute the stress which is equal to T times rho by J. T rho is 
8 and J is 6434. From this we get TA as equal to 0.45 times T. So, if we substitute that, this gives 
us the value of 107.23 MPa. This is the value of the twisting moment from in the part AB. 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 46:21 - 48:02)  
 

 
 
Let us see the value of the twisting moment from the part BC. From the part BC, we can say that 
Tao is a shear stress which is limited to 60 MPa which is equal to TC rhoBC by JBC. TC is equal 
to 0.55 times T, rhoBC is equal to 10 and JBC is equal to 15708 and we are limiting Tao to 60 
MPa. From the above if we compute T we get 107.23 MPa. From this if we compute T we get 
171.4 Newton meter. When 171.4 Newton meter acts at B then the stress in the part AB, will go 
beyond 60MPa and the shaft will fail. So, we will have to restrict the value of the twisting 
moment at B as 107 Newton meter so that the stress level everywhere is within 60 MPa.  
 
(Refer Slide Time: 48:24 - 49:31) 
 

 
 



We have another problem which is of a similar type (of a determinate and indeterminate system). 
We have a solid steel bar of diameter 30 mm. It is enclosed by a steel tube of outer diameter 
45mm and inner diameter 36mm. We have a solid shaft of 30mm diameter which is inserted 
within a tube. This is the tube of outer diameter 45mm and inner diameter 36mm. Now both the 
bar and the tube are held rigidly at end A and B. This is the end A and this is the end B. They are 
held rigidly by the plate and joined as a rigid plate at B.  
 
Now we will have to determine the maximum shear stresses in the bar and the tube and because 
of this, we will have to find out how much sheer stresses are generated in the bar and the tube 
and also we will have to determine the angle of rotation of the end plate. The value of g is given 
as 80MPa. Now let us look into the free body diagram of this particular system. 
 
(Refer Slide Time: 49:32 - 50:51) 
  

 
 
This is the solid bar or the solid shaft and this is the tube and this solid shaft is inserted in the 
tube held at this end A and we have also provided a rigid plate at B. This is held between the two 
ends and it is subjected to a twisting moment. The whole composite system is subjected to a 
twisting moment, which is of magnitude 500Newton meter. The diameter of the solid shaft is 
30mm, the external diameter of the tubular bar is 45 and the internal diameter is 36mm.  
 
Let us say that this (tube in the middle) is subjected to a twisting moment T1 and this (tube at the 
bottom) is subjected to a twisting moment T2. The equilibrium equation will tell us that T which 
is equal to 500Newtonmeter is equal to T1 plus T2. This is the equation of equilibrium and also 
because of this twisting moment T1, this will have a rotation Theta1 and because of this twisting 
moment T2, it will have a rotation Theta2. Since the whole assembly is enclosed between two 
plates the rotation Theta1 and Theta2 should be identical because you cannot have dissimilar 
rotations for two different parts when they are attached between two plates. So, Theta1 should be 
equal to Theta2 and that is the compatibility.  
 
 



(Refer Slide Time: 51:11 - 51:37) 
 

 
 
Theta1 is equal to Theta2 and we can write Theta1 in terms of T1 as T1L by GJ1 and this is equal 
to T2L by GJ2. This material being the same the value will be the same and J1 J2 are the polar 
moment of inertia of the shaft and the tube. From these two expressions, we can evaluate the 
values of T1 and T2 and thereby the stresses.  
 
(Refer Slide Time: 51:38 - 53:51) 
 

 
 
The equilibrium equation 500(103) Newton millimeter is equal to T1 + T2 which is equation 1 
and Theta1 is equal to Theta1 is the second equation. From the first equation, Theta1 we can 
write that T1 times L by G times J1 is equal to T2 times L by G J2. Here since G is the same GJ 
gets cancelled, L is also is the same and it gets cancelled. So, T1 is equal to J1 times J2 times T2.  



Now J1 for the solid shaft is equal to pi by 32 multiplied by the outer diameter which is 30 to the 
power of 4 and this gives us a value of 79521.6 mm to the power of 4.  J2 is equal to pi by 32 
times 45 to the power of 4 as the outer diameter minus 36 to the power of 4 as the inner diameter 
and this gives us the value of 237682 mm to the power of 4. This is the value of J1 and J2 and 
consequently if we substitute here we get T1 = 0.335 T2. We have T1 + T2 as equal to 500 
multiplied by 10 to the power of 3. Here the value of T1 is equal to 0.335 T2. If we substitute 
over the equation one, we get the value of T2 as equal to 374.532 Newton meter and we get T1 as 
125.468 Newton meter.  
 
(Refer Slide Time: 53 53: - 55:04) 
  

 
 
 
These are the values of T1 and T2 and correspondingly then the shear stress Τao1 is equal to T1 
rho by J1 and if we substitute the values, we will get 23.7MPa and Tao2 again as T2 Row by J2 
and if we substitute the values we will get 35.5MPa.  
These are the values of the shearing stresses for the two elements.  
 
We can compute for Theta1 which is T1L by GJ1. Let us substitute 125.468 multiplied by 10 to 
the power of 3 multiplied by L which is 500/G, which is 80 multiplied by 10 to the power of 3 
times 79521.6.  
If we substitute that, we get a value 0.00986 radian. If we multiply 180 by pi we get 0.5650. So, 
this is the amount of rotation that you have. Now if we compute Theta1 we can automatically 
compute Theta2 because Theta1 is equal to Theta2 and thus the rotation for the whole assembly.  
 
Now if we want to compute the stiffness of the whole composite system as we know that T is 
equal to GL by J times Theta, GJ by L, the rotation for unit length is our stiffness. So, GJ by L 
can be computed as T by Theta. We know Theta and T and we know how much the torsional 
stiffness of the whole composite system is.  
 
 



(Refer Slide Time: 55:40 - 56:25) 
  

 
 
Let us summarize this particular lesson. We have evaluated the maximum normal stress due to 
torsion in the shaft and we have seen how the failure line occurs because of this maximum 
normal stress. If we compute the direction of the normal stress, the perpendicular direction to the 
normal stress direction is the one which is the failure line and it is 45 degrees, which you can see 
from the Mohr’s circle given. 
 
Then we have seen the evaluation of stresses and deformation in indeterminate system due to 
torsion and then we have seen some examples to evaluate stresses and deformation in bars of 
circular cross section due to torsion. In this particular   lesson, we have dealt with the 
indeterminate system and we have seen how the internal resisting twisting moment can be 
evaluated in case of an indeterminate system. In the case of a determinate system, we had 
computed directly from the equations of equilibrium. For an indeterminate system, apart from 
the equations of equilibrium, you need the equation of compatibility as well and then you can 
evaluate the value from the internal resisting twisting moment and you can compute the value of 
the stresses.  
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This is the last lesson on the module on torsion. We had 4 lessons in this particular module on 
torsion. In the first lesson, we had discussed the effect of torsion on solid circular sections and 
then we had seen how to compute the stresses and the angle of rotation because of the twisting 
moment when it is acting in a solid circular shaft. Consequently in lesson 2, we had looked into 
how we can compute the values of the stresses and the angle of rotation if the twisting moment 
acts in a hollow shaft that is if the shaft instead of the solid circular one is a hollow one. We have 
seen that in lesson 4.2.  
 
In the third lesson which is lesson 4.3, we had seen the aspects of the power transmission 
through the shafts and we have seen the relationship between power and torque from which the 
stresses and the angle of rotation in the shaft that is utilized from one device to the other could be 
computed. 
Lastly, in the fourth lesson which is this particular lesson we have discussed the evaluation of 
internal resisting twisting moment for an indeterminate system and consequently, the stresses 
and the deformation that occur because of the twisting moment.  
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We have some questions set for you that are based on the discussions, which you have on this 
module. The strength to weight ratio is what you have evaluated. In fact, if you go through the 
lessons you will know how the strength to weight ratio of a bar subjected to torsion is defined. 
What is the torsion equation?  
What is the value of maximum normal stress in a solid circular shaft which is subjected to a 
twisting moment T? Now this is the maximum normal stress which is subjected to a twisting 
moment that we have   discussed and so you should be in a position to answer these questions.  
We will give the answers for these questions in the next lesson.        
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