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Dimension Analysis and Similarity

Welcome all of you for this lectures on fluid mechanics and today we will discuss about

dimension analysis and the similarity.

(Refer Slide Time: 00:43)

I have been following these 3 reference books, but the mostly today I will talk about the

professor Radhakrishnan’s books, which is one of the (()) (00:53) on the dimension analysis

and the similarity concept.

(Refer Slide Time: 01:01)



Now if you talk about that I will start with the physical modelling experiments, what we have

in IIT Guwahati or elsewhere, how we conduct the physical modelling experiment. Then I

will talk about the dimensions of fluid mechanics properties which last class we discussed,

but just I have to repeat it and more interesting things today I will talk about the dimensional

analysis of Bernoulli's equation okay.

Then I will talk about the concept of similarity or similitude, solved examples and summary.

Let us look at very interesting study.

(Refer Slide Time: 01:38)

What we have been doing in the previous lab in IIT Guwahati. So one sites of the figures if

you look at this Brahmaputra river, it is big river systems which have the dimensions in terms

of the length of the island 6 kilometre, width of the island 2.5 kilometre. So huge dimensions

in terms of the length and the width of the islands, the discharge is about 10,000 metre cube

per second, huge discharge, the particle size.

Then width of the left channel and the right channel, these are the dimensions of real rivers

and we call the dimensions of prototype. So the real river dimensions what is that is given as

a prototype dimensions, that is what we reflect in the modelling setups what we have, where

we scale down it with the distance level as well as the geometry level we scale down it, like

for example, the length of the island at the prototype level is 6.5 kilometres.

But the dimensions what you have put it here is about 1.73 metres. So that is what is called

geometric similarity. So we scaled down the models with an appropriate scale. Similar way



also we have scaled down the discharge which is at the prototype level it is 10,000 metre

cube per second, but at the models or at the prove levels we tested with a discharge of 10 litre

per seconds.

So how to do this  type of calculations  what could be the model discharge so that  it  can

represent the flow behaviours at the prototype levels. This is a biggest question what today

will be answered and if you look at these 2 figures you can see these are the 2 experimental

data or experimental geometries of this river represented for the Brahmaputra rivers.

(Refer Slide Time: 04:05)

Same way if you look at that there are series of physical models conducted in CWPRS, Pune.

So like the Kosi barrage if you know it the Kosi barrage, this is the physical models of the

Kosi barrage, which is the scale down the physical model of Kosi barrage. Similar way Indira

Sagar Dam 3D models if you can look it which is a scale down models here. Same way the

Nandaon port, Kosi river barrage, break water at Poompuhar and 3D models of this ones.

If you look at these models there are the scale down models from the prototypes, but when

you do these also we try to look other similarities, what are they? That is what today we will

discuss  it,  but  these  type  of  experimental  set  up we conduct  before implementing  major

projects  like  barrage,  the  dam  projects,  the  port  projects,  all  the  major  project  before

implementing it these all we tested.

And tried to find out what could be the optimum solutions for these Kosi barrage as well as

the Kosi river projects. Like for example, if you can see it there are the flow lines are there,



you can see these flow lines. You can see here there is energy dissipation is happening, you

just see it, where you can see it, if you conduct a physical model you can really just observe

the flow patterns.

You can see this flow patterns, how the flow is going on. It is very easy to observe the flow

pattern, the stream lines, the vertex formations all we can see it very closely conducting this

experiment.  Similar  way  if  you  are  looking  it  how  much  of  energy  dissipated  just

downstream of the spin wheel or the fluids gates you can easily find out how these, the eddies

and the vortex, the energy dissipations what is happening.

And after that how the hydraulic jump or missions are happening, all these things we can

study when you conduct series of physical models. Most of the civil  engineering projects

before implementing the field, we conduct a series of physical modelling test also we conduct

numerical models what available today in different commercially or free softwares we also

conduct the experiment.

But I can say that most of the times we relay, we depend upon the physical model because

that what gives a lot of the strength the support to engineer to take the decision because they

can see visually how the flow (()) (07:21) happening it, like for example, of the Kosi barrage,

if you look into the flow patterns, all the things we can visualize it with a different flow

conditions.

So consider this visualisations part considering the flow patterns to observe even if in a scale

down models that is what gives a lot of confidence to the engineers before implementing. So

I can say there is a 2 complementing each other. The computational fluid dynamics and the

scale models they are complimenting each others. We cannot construct a barrage or the dam

without conducting physical models.

So both are complementing each other in terms of understanding what will be the flow (())

(08:13)  what  will  be  the  energy  dissipation  all  we  can  understand  conducting  series  of

physical models. Now you can have the questions in your mind then apart from the geometric

similarity what you can see it always a scale models have a scale down model and sometimes

also use a scale of models that means always tell it a 1:10 or 1:100, the scale down models.



That  means 1 unit  of the models  representing 10 unit  of prototypes or 1 unit  of models

representing 100 units of in the prototypes. So we do the scale down models to represent the

things also sometimes we also go for scale of models. The models are bigger size than the

prototype,  but these are very special  scales. So of you look at this way we have a lot of

applications of the physical models conducted or any major river projects or the dam projects.

(Refer Slide Time: 09:29)

Now if you look it before starting the topic on similarities, I can say that let us have do a

small  experiments  which  is  called  Reynolds  number apparatus  experiment  which is  very

simple experiment what was conducted by Reynolds with a colour dye facilities, is a dye

injectors and there is a pipe which is regulated the floor here and the flow can be conducted

with different Reynolds numbers, the flow Reynolds numbers.

The flow Reynolds number as you know it is defined as this way, that means inertia force by

viscous force, if I make it that receives will gives Reynolds number, but this that what as you

increase the number of the Reynolds numbers as is indicated this that, if you increase the

number of Reynolds number you can see this coloured dyes are changing it, that means there

are lot of diffusions of coloured dyes happening.

The flow patterns are changing it, visually what we are saying it, there is change of the flow

patterns,  there is change of flow from the laminar to transitions to the turbulent.  We will

discuss all how it happens with virtual fluid ball concepts but you can see that with simple

coloured dye experiments we can find out at what the Reynolds numbers, the flow changes

from lamina to transitions.



The transitions stage to the turbulent stage, we can identify and we conduct the experiment

with respect to the nondimensional number of Reynolds numbers. So that way this is a very

simple  experiment  to  find out  the  threshold of  the  Reynolds  numbers  to  divide between

laminar transitional flow, transitional flow and the turbulent flow. So more details we will

discuss in the next class.

(Refer Slide Time: 11:41)

Now let us coming to the dimensions of the fluid mechanics properties, as discussed in the

last class, I am just repeating it that you have the dimensions of basic geometry which in

terms of length,  area,  volume. Then comes out the velocity, accelerations  and volumetric

discharge that means volume per unit time, that is what the discharge, volumetric discharge,

volumetric rate.

Kinematic viscosity and the strain rate, similar way we look it this sides, the dimensions of a

pressure, stress, viscosity, momentum flux and torque, power, work and energy, mass flux,

this is the momentum flux, this is for the mass flux surface tension and the density. So I am

not repeating these, but just to have the, showing you the dimensions of basic fluid properties,

what we generally encounter to solve the problems.

(Refer Slide Time: 12:49)



Now if you look it, many of the times when we derive a big equations, we face a difficulty or

we face have a doubt over that, the equations whatever I have derive it are they correct? In a

equation you can have soft components, are the soft components are correct? So what do we

do it, we use a dimensional analysis concept to find out the equations what we have derived is

it correct, also we can look at the equation derivation at the step by step that what is the unit.

Or what is the dimensions of each term of equations, if you evaluate that then you can check

it the correctness of the equations. That is what if you look at this equations, this looks very

complex, okay. There is a equations which is involved with volumetricals and divide it there

is a mass flux in and mass flux out, it looks like very difficult equations. It is having that

stands that we will do mistakes in any of the part of the equations.

What you do it that case, that you just check the correctness of this equations, substitute the

dimensions of each terms like rho dv, dv is the volume stands for, 1 by T is the time, d by dt

is 1 by T. So you get dimensions of these part. Similar way this is mass flux coming in and

going out,  that  is  what  VV and by T. So that  way if  you look it  the  each terms of  this

equations having the same dimensions that means the equation is correct.

The same way you can try it look this ones, this also will have a same expressions. So we can

always look it whenever you have a doubt, over a equations which is mostly the lengthy

equations you substitute the dimensions and see that each term of the equations whether have

the same dimension or not. If not, then you check it where it is the mistakes. So that is what

in this case, the conservation of mass which look is very complicated equations.



But to know the correctness of the equations we use the dimensions of each term then find

out what is the dimension of each term then the part what we look it at the dimensionally

homogeneous, that is what we tested it. Similar way this if you look at the linear momentum

relation in the streamwise direction which looks very difficult equations what we have, we

write it from these, the sum of force is gravity force and pressure force, again we write in this

form.

It  you look it  there is  a differences,  so all  these terms if  I substitute  the one by one the

dimensions like in this case gravity force, this is the unit weight, area, then dz, this is a area

dp, the pressures. Similar way if I substitute all  the terms if  you look at that each terms

having dimensions into L by T square which is the force. So each terms are equating into the

force.

So  these  concept  what  I  introduce  for  you  only  whenever  you  derive  a  big  equations,

complicated  equations  like  there  will  be  a  integral  part,  differences  part,  please  use  the

dimensional  analysis  compound  to  find  out  are  they  correct  in  terms  of  concept  of

dimensional homogenous of this equation. Most of the physical equations are dimensionally

homogeneous.

(Refer Slide Time: 17:11)

Now the similar way you know it is most often what we do in the fluid mechanics, we use the

Bernoulli’s equations, okay, mostly widely used or widely misused equations, which is called

the Bernoulli’s equation. We discussed lot about this equations. So let us have again look at



that in a dimensional analysis of Bernoulli’s equations with a derivations part. If you look at

the unsteady frictionless flow along a streamline which is the Bernoulli’s equations, it look it

in terms of differences, the integrations part and all the things substitute the dimensions.

Finally, we will  see it the each terms having the same dimensions L square by T square.

Substitute that, I just encouraged the students have these practise, wherever you derive the

equations, just spends few minutes to write the dimensions of these variables, each term, then

check it whether it is dimensional homogenous. So that way you can use each dimensions and

check it this is what. 

The similar way you can check this equations also. If there is a mistake in this equations you

can easily identify when you equate the dimension of each terms, because it is dimensional

homogeneous equations. So each term should have the same dimensions and if you equate it

you will get same thing. So if you go for a simple model this is what called a very, it is not a

complex that merge, but we can say that having integrations and all the fact.

So but when you talk about a steady and compress flow, you know the standard Bernoulli’s

equation in a different forms and you just substitute it, you will get the dimensions which is

the length dimensions. So we always use the dimensions to understand it whether is there is a

correctness of the equations, if not then we look it where is the mistakes. Not only that you

can also interpret it each term what is representing it.

Like for example, what I have here is the length, that means it is an edge equivalent to a

water head. It is a length dimension, it is L equal to energy in terms of water head, that is

what we are getting it here. So the dimensions also speaks out that what type of conservations

we are doing it, but we can also interpret it the physical meaning of this dimensions what we

are getting it.

(Refer Slide Time: 20:07)



So looking that part,  let  us go for the next step which is  the similarity  or similitude (())

(20:13) that means in fluid dynamics when you conduct the experiments, we should have a

relationship between full scale or the prototype and the flow with smaller ones which is the

model. We need to have a relationship between that. That relationship if you can use it by

conducting the experiment at the model scale you can take it to the prototype scale.

If that is the conditions either you conduct the experiment with the full scale as we saw lot of

experiment facilities for automobile industry they do, to tell full scale models okay, but many

of the cases we cannot go for the full scale models like a dam which is in generally of having

the  dimensions  for  30  meters  high,  it  is  width  of  40 meters,  more  than  that,  we cannot

conduct these type of big experiment scale experiment in any big set up.

So we cannot do a full scale models for a dam, full scale model for the barrage, but we can

conduct full scale models for automobile aerospace industry problems also, but not in the

problems which we encounter in civil engineering problems, which have more dimensions

we scaled down the models which we do the scale down of the models we have to look the

similarity. 

This 4 type of the similarities happens geometric similarity, kinematic similarity, dynamic

similarity and the thermal similarity. So as we are not talking about energy, conservations

much more in these lectures, we focus on these 3 similarity, geometry, kinematics and the

dynamic similarity. 

(Refer Slide Time: 22:07)



So if we look in that part, the first I am talking about geometric similarity. If you look it, this

is  what  the prototypes,  pole  scale  okay, that  is  what  is  the Boeing X48B but  we cannot

conduct this big scale experiments, what we do it we scale down it. We make it exactly the

same in terms of a scale down models so that we keep all the angle, the flow direction are

preserved.

Orientations models and prototype with respect to surrounding must be identical. So what we

do it we do a geometrical similarity with a same linear scale ratio. Same liner scale ratio we

apply  it  and make  it  to  geometrically  the  similarity  that  is  what  is  the  geometrical  and

similarity  models  what  exactly  you can  compare  visually  that  they are  geometrical  scale

down it.

They are like the length, the area, the volume, all geometric scale down with the angles and

all this and finally, we testing in the wind tunnel facility, that is what the wind tunnel facilities

this  model  is  tested in  the wind tunnel  facility  and whatever  the pressure variations,  the

velocity variations, they we take it from the model to the prototype to design a robust Boeing

fighter plane. So this is what have been doing it with the geometric similarity.

(Refer Slide Time: 23:47)



But we also to look it should have a kinematic similarity. When you talk about the kinematics

what it says that we have the model, we have the prototypes, that this is the prototypes, this is

the models, that means in the model and prototypes would have the same velocity factor, the

stream lines patterns that means the velocity factors what we have the velocity direction that

stream line and the models would have a scale factors okay.

We can have a scale factor so that the kinematic similar is a homologous points, the points

what we have to telling it which is the representing models and the prototypes that should

have a lies at the homologous points at the homologous times and same time in time and also

in a positions, this would have the same location, same factors, so we will represent it. If it is

that then it is called the kinematics similarities.

So it depends of the time scale along with the length scale. So 2 scales are there. The time

scale and the length scale. So to achieve this we do a Reynolds number similarity, Froude

number similarity or Mach number similarity. 

(Refer Slide Time: 25:11)



Now if you look at another problem where we are looking for the similarity length, like for

example, we are looking for a free surface flow with a prototype waves. This is the wave

process maybe happening in oceans or the lake that what we have to represent it in model

waves. When you do that if you look at that the way we have characteristics like the height of

the wave, the length of the wave and also we have the velocity factors.

In these case since it is a free surface flow conditions, flow Froude numbers should be equal

or model as well as for the prototype, that is what is there, the flow Froude numbers of the

model and prototype should be equal then we are substituting the flow Froude numbers in

terms of the velocity and the length. Since we are conducting the experiment on the R surface

so G does not vary, the acceleration due to gravity does not vary.

So you can use the same G components, so you can get it the a relationship between the

velocity at the model, length velocity of the model and the velocity and the length of the

prototypes there is a relationship what we get it when you do kinematic similarity, that means

equating flow Froude numbers or model is equal to flow Froude number of the prototype.

So if you look at the scales, so the flow Froude numbers contains the length and the time

dimensions because there is no mass dimensions in that. So it is purely kinematic parameters

fixes  the  relation  between  length  and  time  scale.  If  I  consider  the  alpha  scaling  factors

between the prototypes and the models if I use this relationship, I can get the what could be

the ratio of the velocity of the models and the velocity of prototypes with substituting this

equations will be square root of the alpha.



Similar way the time scale will be computed as like this, so these are very simple calculations

can be done. So if you look at that way, this is what the prototype scale after the scaling down

the same process with scale down the length in terms of alpha factors which is the length of

the wave and the height of the waves but the velocity and the time will have a different scale

factors. This is what we computed based on flow Froude number similarity concept.

So this is what the time ratio or time scale and the velocity scale as make it, so most of the

times we do these things to compute it what could be the if this is the length scale what could

be the time scale, what could be the velocity scales, so that we can represent the flow which

is kinematic similarity between prototypes and the model.

(Refer Slide Time: 29:00)

Let us discuss about the dynamic similarity, these similarity adjust when you have the 3 scale

ratios, like the length, time and the force. So are the same or model and the prototypes. So the

dynamic similarity happens not only this length and the time scale but also the force scale

similar ratios will be there, what do you mean by that if you have a let you have a problems

like this, you have a prototype, you have a gate.

And flow is passing through gate and having the hydraulic jump here with having a small

eddies or vortex formations like this. This is the point where we are looking at what are the

force components are there as you know it, it will be the pressure force component, gravity

force component, friction force or the viscosity force component and inertia force component

and each force has the directions component.



If  you  look  at  these  they  should  have  a  balancing  all  these  force,  vector  balancing

components at the prototype level. If prototype and models are at dynamic similarity that

means the vector diagrams of this force component of the prototypes and the model should be

exactly the same. Force magnitude make the difference but the vector diagrams, vectorical

diagrams (()) (30:35) all these component should be exactly same.

So that the force all these component should be exactly same if it is that we can make a ratio

between forces of inertia force of the model and the prototype this would be equal. So if you

look at these concept when it hold good we call dynamic similarity to achieve the dynamic

similarity first you should have geometric similarity as well as the kinematic similarity. If you

do not have these 2 similarity, we cannot achieve the dynamic similarity.

So  when  a  dynamic  similarity  are  the  same  the  model  prototype  force  and  pressure

components are identical that means the ratio look the same. So if you look at this way the

force what is acting is here and the if you look at this the diagrams, the force vectorical

diagrams of model and prototypes they should have the same. If you exactly know from the

vector calculus, we can compute it but will be the ratio between them.

The ratio between them should be equal otherwise the vectorical additions of these exact

similar will not be (()) (31:52) you make it the ratios are the same, the directions and the

ratios are the same value. Mostly if you look at these for the compressible flow, we use the

Reynolds numbers, Mach numbers specific  heat  ratios but incompressible  to without free

surface flow conditions we mostly the Reynolds numbers.

But  others  like  numbers  also  comes,  the  Reynolds  number,  Froude  number,  Weber,

Cavitations number what we discuss can be used for free surface flow.

(Refer Slide Time: 32:25)



Now let us derive the relationship between the dimensional analysis and the similarity. As I

told from the vector diagrams of the force components that the dynamic similarities force

acting these points are similar in these case the inertia force of model and the prototype,

pressure force of model and prototype, friction force are the viscous flow model prototype

should be constant.

Then dynamic similarity it is achieved and that is the case so now we can just reshuffle these

equations to get it at the model level and the prototype level we get a one constant. Similar

way we write inertia force and the pressure force, inertia force we get another constant. So

you are equating as I said it earlier we equate the flow Froude number similarity with in case

of free surface flow. 

So similar way we can establish these equations this is the Reynolds number equation that

this is what the Euler equations part, what we can get it by equating this part.

(Refer Slide Time: 33:38)



Now just to look it, I am not going detail derivations of this part if you take a fluid element

along a stimuli like this is the fluid element okay, this is the stream line which is having dx

and  dn  dimensions,  you  have  the  shear  stress  which  is  changing  at  this  along  the  n’th

directions and you get it what could be the shear stress. Similar way you can find out the

pressure values and all.

Then you can compute the force due to the viscosity that will be the change of shear stress

into the volumetric part. That is what if you portrait you get it this part. Rest you substitute

the Newton’s laws of viscocities and all,  then you will  get this part.  Similar way the net

pressure force acting of this you can see it will be this part and inertia force computation

which is the, in case of the steady flow, mass into the acceleration or rate of change of the

momentum flux that is what the mass and the momentum flux but you compute it, that along

the stimuli directions will give us the inertia force components.

(Refer Slide Time: 34:55)



If you equate it and substitute this values in case of loss of dynamic similarities the ratio

between these part, you can see that these equations comes out to be the Reynolds and this

equations comes out to be the Euler strength. So basically we are trying to tell it that when

you go to the element level we can derive the ratio between inertia force to viscous force

which comes out to be Reynolds numbers.

We can compute it and you have same expressions. Similar way if you are computing the

ratio between inertia force to the Euler number which will be reverse of the Euler numbers

that what also we will get it and we will get the expressions of the Euler numbers and the

Reynolds number. So it is quite easy, you can look at the stream line at the element level as

well  as  the  gross  characteristic  levels  we  can  understand  the  flow  reverse  in  terms  of

Reynolds number similarity or the Euler number similarity.

(Refer Slide Time: 36:04)



Now let us come back to examples like this, let us have a testing of automobiles in a wind

tunnel to find the aerodynamic drags, the power required to overcome this drag part. The data

is what is given is model width frontal area, testing velocity, the scale, drag coefficient. It is

given these data, we need to compute the power required for the prototype level. So since the

pressure, the temperatures are given at the standard levels you can find out what will be the

density of the air.

You can  find  out  what  will  be  the  dynamic  viscosity  of  air  which  the  functions  of  the

temperature, you can compute it this way.

(Refer Slide Time: 36:50)

Now you can have the model width and there is a scale ratio is the given for the model width.

We can compute it with the width what could be the dimensions here, the model frontal area,



since the length is 1 by 16, the scale is (()) (37:07) and area will have a L square that mean 1

by 16, 1 by 16 so we use for the area 1 by 16 square to compute it with the model frontal

area.  We use the dynamic similarities means the Reynolds numbers of the models should

equal to the Reynolds numbers of the prototypes since the density and the mu.

The same air we are using it so density and the mu are the same so it is come down with this

value. So substituting these we can find out what could be the model velocity. Then we can

compute it what will be required the Reynolds numbers for the models, because we know the

velocity, we can find out what will be Reynolds numbers and what will be the drag force of

the prototypes also we can compute it and power requirement of the overcome this drag force

also we can compute it using the power is equal to the force into velocity component.

That is what you can use it to compute this part, it is very easy just you have to have a, the

many equations is to use is your very simple equations and you have to compute it okay. So

like for example,  is  that  we do not  know what  is  the equations  of this,  you just  put the

dimensions  and  check  it  that  whether  it  is  a  force  component,  CD  does  not  have  the

dimensions, the p square the rho and Fe you just substitute it you will get it the force, the

dimensions. Similarly, the power is energy per unit time, you can use this force in to the

velocity will be the power.

(Refer Slide Time: 38:56)

Let  us  come to  the  second  problem which  is  flow over  a  sphere  which  is  GATE 2017

questions which is given laminar flow, drag coefficient equations, the density, diameter of the

sphere is given, velocity and the CF value is given. Then water now flows over a sphere of



200 millimetre diameter under the dynamically similar conditions to compute the drag force

on the sphere 2.

(Refer Slide Time: 39:26)

If that is the conditions what will  be the this case, there is no free surface, only the pro

Reynolds number of model and prototypes we equate it. As it is not given much details about

these 2 parameters the density and the mu you can have a basic equations of this ones, just

equating them and you can have a this model and the prototypes you have the same CF value.

If it is that is the conditions, you can easily compute it force and put the active value.

So only you have to try to understand it what should be the dynamic similarity will be there,

whether the flow, Reynolds number or the flow Froude numbers. Then you will look it at the

force levels what is the dynamic similarity conditions like CF1 is equal to the CF2 which is

the functions of the Reynolds numbers. So we can find out the what could be the force acting

on this.

(Refer Slide Time: 40:27)



Now let us come back before concluding lectures that most of the time we would feel boring

of the fluid mechanics (()) (40:35) lot okay but many of the times the knowledge of the fluid

mechanics help us to understand so complex problems like economic model of a developing

city. We can use our  knowledge of fluid  mechanics  to  develop a economy models  for a

developing city like Delhi.

If you look at this the red colours are the urban areas, these are real datas which is prepared

by my students you can see the 1977 what is the red colour area, 1993, 2006, 2018 and this is

the real data of economic growth, but we do not know what is going to happen in 2050, 2100,

that  is  what  is  the  economy  model  students  predicted.  To do  that  let  us  use  our  fluid

mechanics knowledge.

What type of control volume we have, we have deformable control volumes as the control

volumes are changing it if you can look it that is control volumes are changing it, both in

horizontal  and  the  vertical  dimension.  Here  there  are  lot  of  flow  is  coming,  it  is  mass

conservations  we follow it  either  for  money or  job,  the  storage  and all,  there  are  lot  of

transport process happened in economy models okay.

In microscopic level and macroscopic level, the knowledge what we have the fluid mechanics

the particles movement, the element movement all these things also used to develop economy

model. Similar way we look it, whether a Lagrangian or the Eulerian frame works. Eulerian

frame works means we talk about at the bank level, they do not look it individual money, they

look t gross, a particular bank is locating what is the total turn overs.



Representing a, so they do not look it the individual part, but individual level a persons is

Lagrangian  frame  work,  so  that  way  if  you  look  it  if  you  really  understand  the  fluid

mechanics  you can solve or you can develop economy models for a developing city like

Delhi. So please do have a lot of interest on the fluid mechanics, is not that it is developed

just  like  a  the  science  has  developed  such a  way that  with  combinations  of  experiment,

theoretical derivations.

The computational techniques, it has come to certain levels that it can also apply many of the

fields and most of the fields at the similar concept we follow it and that is what my example

to show it. If you are good mathematicians or good fluid mechanic specialist, you can also

use the concept of the fluid mechanics to develop a economy models and predict what could

be the scenario of the economy or what could be the spread area this red colour area for Delhi

city for 2050 or 2100.

With this let us conclude this lecture, but just trying to show it if you look at the history of the

pipe flow experiment. 

(Refer Slide Time: 43:51)

Which  started  in  1883  with  Reynolds  Osbourne,  Poiseuille  and  Hagen  okay  then  Julius

Weisbach, 1845 and Von Karman in 1930. So each one they have contributed for pipe flow

experiment so uniquely to derive this equations and which we so openly today we are using it

and for designing the pipe flows. We will have more discussion of these in the next class. Let

me thank you for this lecture today.
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