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Welcome back everyone. In previous classes, we basically discussed how to formulate

equation of motion for undamped system and as well as damped system. Now as we

discussed damping, that we used in our differential equation of motion, it is of type linearly

viscous damping. So, the question comes if we have a structure or a system, how do we

determine the value of damping in a structure.

So, in today’s class, we are going to look into how to experimentally determine the value of

damping, what are the different methods that are available. We are going to learn about 2

methods specifically logarithmic decrement method and then there is another method which

is called half power bandwidth method.

We are also going to see, the nature of damping in a structure is not always of viscous type.

But we can equate the energy of dissipation mechanism in a structure to a viscously damped

system and find out the properties or the equivalent viscous properties of the system. Because

it allows us the simplified differential equation that can be easily solved.

So, let us get started with the today’s lecture. So, till now what we have covered in Free

Vibration is 2 types of free vibration, the first one that we discussed is Undamped Free

vibration.
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So, we discussed Undamped free vibration and the second type of vibration free vibration

that we discussed was Damped Free Vibration. We set up the equation of motion for these

two types of free vibrations.

So, we know that, for undamped free vibration, we will not have any damping term. So, let

me write down the equation of motion here. So, there is no damping term here and of course,

applied force is 0 on the right-hand side. For damped free vibration, we had damping term

here. So, we had this term here and this was equal to 0.

And for a given initial condition u0 and , similarly for this for this type of vibration. We

derived the solution of this differential equation for the displacement at any time t and we

saw that the u(t) for this was .

And for this we got it as u(t) = .
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So, few important things to note for these two displacement histories. If you look at the

displacement history for undamped part, what we have here is a constant amplitude that can

be written as . Where u0 is the amplitude of this motion and it can be written

as .

If we try to write down the equation of motion of this displacement history for damped free

vibration, we can write it as. Then the inside term, I can write as , where

. So, this is the expression that we get for U.

So, let me write this one as again, . So, you can see if you compare the amplitude

of undamped free vibration and damped free vibration, you could easily see that, for

undamped free vibration this does not depend on time, it is actually a constant value, only

depends on the initial conditions and , it remains constant with time.

As opposed to the second amplitude that we have here, for damped free vibration in which I

have this exponentially decreasing term that is multiplied with this U to give me the

amplitude at any time t. So, amplitude is decreasing over time.
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And if you wanted to draw both displacement histories on the plot here. So, let us say this is

my u(t) and this is t.

So, in this case, with some initial condition, my free vibration starts like this with constant

amplitude over time and then my damped free vibration will start at the same initial

condition. However, it will decrease over the time. So, it is going to decrease over the time,

and this is the envelope curve, which represents the decreasing amplitude of the damped free

vibration.

Second thing to notice is that, in undamped free vibration my system is vibrating with the

frequency . However, in damped free vibration, my system is vibrating with frequency

. And of course, we saw that relation between and is nothing but this

, which for a small values of ξ, ωd is approximately equal to ωn. So, before

going any further, this ξ is nothing but damping ratio.
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We define this damping ratio and where c is the damping coefficient of the

system that is being considered and ccritical is the critical value of the same damping coefficient

for which it would inhibit or it would transition from an oscillatory motion to a

non-oscillatory motion.

And you know, we derive the value of ccritical it was nothing but 2mωn, which can be further

written as, if you write , this you can write this is as . Once we have the

expression for ξ, depending upon the value of ξ, for example, I could have a system with

damping ratio less than 1, I could have a system with damping ratio 1 or a damping ratio

greater than 1.

And we categorize the system based on these damping ratio as either under damped system or

critically damped system or over damped. And most of the you know civil engineering

structures fall in this category of damped system.

Typical civil engineering structure would have damping coefficients which are smaller than

0.1 or 10 percent. But there might be some systems which should be critically damped and

over damped, especially shock absorber or things like a retracting door mechanism that you

have, they utilize critical damped or over damped systems.



So, this would find next two damping systems, would be more common for mechanical

system or aerospace systems. So, our focus of study would be limited to under damped

system from here on. Once that is clear, how do we utilize the damped free vibration and the

undamped free, this type of free vibration to get the system properties.
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So, how to experimentally determine system properties or structure properties for our case.

And the structure properties that I am talking here could be time period or undamped time

period or damped time period or damping ratio.

Now, remember it is very critical to find the damping ratio in many cases, because we said

that there are several sources of energy dissipation in a system and just because we cannot

explicitly, mathematically model those mechanism. For example, friction at the joints,

internal elastic straining of materials. So, we said that all of those energy dissipations will

represent using viscous damping.

And for that viscous damping what we derived the expressions for ξ and everything. So, one

would be the critical parameter that we can determine using the experimental tests. Now what

do we need to determine, those would be the displacement history.

So, let us say, displacement history is given to us. If the displacement history is given to us,

we need to determine what would be these properties and let us see how we do that. Now, for



damped system, we said that the displacement at any time t can be represented as u(t) =

, where the expression for U is already known to us, which depends on

the initial conditions and the frequency of the system. Now let us consider the displacement

here and the next displacement here.

So, consider 2 peaks of the displacement history at time t. So of course, the next peak would

be at time t + TD. So, u1 is at u(t), so that my next peak is at u(t + TD). Now let us see what we

get as expressions for these.
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So, if I write u1 by u(t), the ratio of these two peaks, we substitute in this expression that you

have here, you will get as and the denominator would be same u,

however I will have to replace t with the t + TD and then again .

Now, remember that cos is a periodic function with a period of 2П and ωd × TD is 2П. So, this

denominator cos term would be equal to the same as whatever the cos term we have in the

numerator and then you are left with U and U will also get cancel off.



So, if you simplify this ratio, what you will get as this and if you look at this value

carefully, there is no time term in here. So, u1 by u2 is constant and the same would be true for

any time t and t + TD.

So, any successive two successive peaks would have the same ratio. So, I can say that this is

also same because remember the time t that I had considered here was any random time t, it

does not have to be the first peak or second peak, 2 successive peak. So, u1 by u2 would also

be equal to u2 by u3 equal to u3 by u4 and so on. So, that remains constant.

Now, if you look at these value here my ξ ωn TD and TD is nothing but and ωn Tn

is 2П, so I will write this as . Now we represent this as a value that is called δ

and this delta plays an important role in further because this ratio is very important. So, what

do I have here is actually u1 by u2 is equal to eδ.

And if I take the logarithmic the natural log of both sides, I will get δ as nothing but equal to

ln(u1/u2) or it can also be said ln(u2/u3) and so on. Ratio of any 2 successive peak and a log of

that ratio is the value δ. Now this is called the logarithmic decrement.
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Because this is the ratio through which the successive peaks reduce due to damping. Now this

δ here that we have , for a small value of ξ, this actually is denominator that we

have here is approximately equal to 1 and we can write this as 2Пξ.

And this is an accurate enough representation for all ξ smaller than 20 percent, which covers

almost most range of structures for our purposes. Now, if I have that, then I can write 2Пξ =

ln(u1/u2). So the damping ratio can be obtained as ln(u1/u2)/2П. Now remember u1/u2, these

quantities are available to you from the experimental displacement history that you obtained

from your tests.

You can utilize either use a string potentiometer or some other lab testing instrumentation

through which you can obtain that. But the idea is that your damping is nothing but

ln(u1/u2)/2П. Once you have that then you this method will help you in determination of the

damping.

Now let us further discuss one thing, let us say you have a system which has a very small

value of damping. Now if the damping is very small then what happens that this decrement

between successive peaks are also very small.

So, those are not as prominent as you see here, not by this much but even further small. So,

this decrement is much smaller. So, let me try to draw this, then try to be accurate. Now in

this case what happens, if you take 2 successive peaks for example here and here then there

could be lot of error due to reading it might be reading error or it might be some other error.

But it would lead to some error in the estimation of the damping value. So, what we try to do

for lightly damped systems, we do not consider one peak. But we consider over multiple

peaks so that we the error is distributed. For example, in this case let us consider this peak

which I would call as peak i and after j number of cycles I would consider another peak

which is peak j.

So, this is (i + j)th peak after j number of cycles, so this is j number of cycles. So, I will have

(i + j) and it will have j number of cycles. Now let us see what happens if I consider any peak



ui and the ratio of this with respect to any peak which is after j number of cycles, so I have ui +

j.

So, in this case, I can write this as ui/ui+1 then ui+1/ui+2 and so on, then ui + j-1/ui + j. Now I know

that the ratio of successive peaks is nothing but the logarithmic decrement delta.

So, what I am going to do here, I am going to write this eδ, from this expression here again eδ

and so on eδ, this would be j number of times, because there are j number of cycles.
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So, this would add up in the to the power and it would give me eδj. So, if I take the log of both

sides, I get δ as 1/j × ln (ui/ui + j) and if you write δ as 2Пξ, ignoring the denominator term.

Then the ξ can be calculated as (1/2П) ln (ui/ui + j).

Now this is over j number of cycles. So, let us say, if you had considered only successive

peaks to calculate the damping, it would lead to the reading error, because now you are

considering only 2 peaks. So, there would be reading error in u1 and u2 and then you are just

using that ratio to get the damping.

However, let us say you are using 10 number of peaks. So, the ratio over 10 number of peaks

would decrease more and the reading error is gets divided over 10 number of cycles. So, you

are likely to get more accurate reading if you consider multiple number of cycles.



So, once we have this method, which is called logarithmic decrement method to determine

the damping or the viscous damping in a system, we will utilize this to get the value.

So, once you will have ξ, if this is displacement history is given to you from the experiment,

this you can also used to get the value of TD and then if the TD is known then the natural

vibration frequency can also be obtained using .

Once you have this, let us see how we can utilize this. So, basically using this this

displacement history, you can obtain these two values. And you can look at some examples

where they have provided you the displacement history to obtain the damping ratio of the

system.

So, next topic that we are going to study would be the energy dissipation or the energy at any

time t in a free vibrating system. So, what we are trying to study here is energy and free

vibration.
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Let us first consider undamped free vibration. Now if I draw the spring-mass representation, I

basically have this stiffness spring k, this mass m, which has going through the displacement

u(t) and the initial conditions are given to you.



So, if for these initial condition, the input energy to the system can be written as - remember

that would be 2 type of energy due to velocity of this mass there would be kinetic energy in

the system and due to deformation of in this spring the potential energy is basically obtained

as the stiffness energy in this system.

So, there are two type of energy in the system and we are going to find out the expression for

energy at any time t. So, let us see the energy first the input energy to the system due to the

velocity or let me first write down the strain energy.

So, the potential energy is due to the strain energy in the spring which can be written as (1/2)

× k × u2 and then the kinetic energy I can write it as (1/2) × m × ů2.
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Now let us see at any time t the displacement is given as for undamped free vibration

and the velocity is given as you need to differentiate it

once. So, that you get as .

So, at any time t again the total energy would be sum of the energy in the spring which is the

strain energy. So, I am going to write as Es(t) and then the kinetic energy of the mass, I am

going to write it as Ek(t). And if you write it as this Ek(t) as this square of this quantity here



plus half of again you will you can write this as mass times the square of this here. And

just keep in mind this relationship that we had that . So, you can write .

And if you utilize that and you take ωn outside from this here, let us see what we get. So, I am

writing as , this square is here plus and then I will have a term here which I

can write is as and there is this term here.

So, I can basically take this common and well I will simplify that and add that and use the

trigonometric identity that . Basically, this will simplify to in this

case + 2ab term will get cancel off for both terms.
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So, you can further write it as. So, I am going to multiply this with this and then the same

quantity with this except in this case what I am going to do here is actually write again

. So, the first term that I multiply with this, I am again going to write it as k × u0
2

and the second term that I am going to write it as would be.

Now remember that I have this term here. So, this is not only this much but this whole

quantity square. So, when I write the second term this ωn
2 by ωn

2 will cancel off and I will get



this. So, this is the total energy at any time t, which we see is independent of time and this is

what you should expect. Because this is a free vibration where there is no energy dissipation

because we have neglected damping.

So, theoretically you know if the system should have the same energy, energy should be

conserved at any time t. So, this is the energy at any time t, which is independent in time and

this is also equal to the initial input energy that we had obtained.

Now, you could do the same thing for the damped free vibration and by using the expression

for u(t) of damped free vibration and exactly following the same procedure, nothing is going

to change here in that case as well. So, you can try that out. But remember in damped free

vibration when you try that you will find that the energy is a function of time and it is

decreasing with time.

So, if you consider, let us say damped free vibration, you will see that it would be decreasing

with time and that dissipation in the energy is due to the viscous damping that we have

assumed in the system.

Now if you have any viscous damping force which is fD and due to this force if there is a

dissipation energy and let us say the system is undergoing displacement u. The energy

dissipation due to viscous damper can be calculated as force times the displacement du over

time t1.

Now, we know that fD can be written as and du is basically nothing but again velocity

times dt. Basically, . So, this is the expression I can further write this as and

depending upon what the expression is for , you can find out how much the energy that is

being dissipated in the viscous damping term here.

So, we have considered now the energy in a free vibration for a damped system and then we

discussed that how you can follow the same procedure to get it for the damped system as well

the same procedure is in undamped system. And the energy dissipated in the system can be

calculated using this expression here.



So, with this the all the topics on free vibrations are finished, what we are going to do now,

we are going to do two examples to demonstrate the principles of this. And these are practical

examples that you might observed, and you could have come across this at some point of

time.

So, for the first example let me consider this, now many of you would have seen that when

something is shipped to you, for example, if it is an expensive package and then you buy it

from online retailer or something is getting shipped. Then it is usually shipped inside a box

and if an item is of high value.
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So, if something is shipped to you, it is actually shipped inside a box, so this is our example

1. And they put an item, they put the item inside the box, and they try to fill it up either with

some kind of material that provides the protection to this.

Now, if the item is of high value and somebody comes to you and ask you there is a very

expensive item I want to ship. So, I want to design, I want you would ask you to design the

container and the material this stuffing material. So, that it would be protected against any

kind of damage due to fall accidental fall or things like that.



So, how would you go about modeling this problem and then solving this problem? That is

what we are going to discuss in this example. Now let us take the example of this expensive

item inside the box.

First as an engineer we have to come up with some design parameters, like you cannot, or

you should not ship it like you know in a very large box. Otherwise, what will happen, the

shipping cost would increase, and you might think that this is just for one item. But just

imagine if everybody starts shipping in big boxes how much of cost escalation that would

lead to in the shipping and the logistics.

So, you must come up with an efficient design, so let us talk about some design parameter.

First thing here would be what is the weight of the item? Let us say it is a mobile phone and a

typical mobile phone. Let us say it is a mass of this mobile phone is around 0.1 or let us say it

is 100 gram. So, that first let me write it as 100 gram, so I can write it as 0.1 to kg.
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Now, for this mass, I have to fill this box with some kind of material. It might be foam; it

might be stuffed paper, or it might be bubble wrap. So, these are the typical stuffing material

that we use and for these materials you would typically have the value of the stiffness

constant.



So, example if I represent this box with this item inside and basically this is the stuffing

material providing some kind of flexibility to this item that is inside. Now remember that for

this problem, we would only focusing on vertical impact because that is more important.

So, although there could be, it could be represented on horizontal springs we are only worried

about the vertical stiffness of the spring. So, these two springs that are important to me.

So, let us say, just for the sake of argument it is 10 Newton per meters. The 3rd thing would

be, what could be the typical height of fall? Because that is going to determine the initial

force or initial conditions that would lead to the damage to or like you know the vibration or

like you know the movement of this item inside the box.

Now, if you consider typical height of a person is around 1.75 meters right and let us say he is

getting up and down in a vehicle. So, vehicle is around 0.5 meters from the ground. So, we

are talking about 2.25 meters of total height and just to add some factor of safety, I am saying

that the total height over which it can fall might go up to 3 meters.

So, I am considering that at max 3 meter is the typical height of fall, that in case of an

accidental fall. Now, what will happen? Let us say, this box is made up of simple cardboard.

So, it is not elastic as soon as it hits the ground the box itself does not bounce, but the

material inside it starts to vibrate.

So, let us say, it is falling over height of 3 meter on the ground. So, what happens after it falls

to the ground? Both and this is the mass of this cardboard is although it would have some

realistic mass, we are going to assume it is negligible compared to the item inside it.

So, let us say it is falling so that falling through a height of 3 meter, this has mass m and there

is stiffness k. As soon as it falls what happens, all the velocity gets transferred to the system

that you have inside that box. So, this mass here and that velocity would be what? I can

simply write this as and if you can calculate that right, you can calculate that as 2

times 9.8 times 3.

And you can calculate this value and that would be the initial velocity of the further

vibrational or the oscillatory motion of this mass. So, let us see what we get that as, so I am



just going to make some quick calculation here. And I basically get that as 7.6 meter per

second and this is the initial velocity.

So, what happens that as soon as it hits the ground, the container comes to rest. But it imparts

initial velocity to the mass inside it and the mass now it starts vibrating. So, the mass inside,

it start vibrating with some initial velocity.

Now the design parameter for what should be the dimension of this box and how can we

determine that? Well, I can calculate that maximum displacement of mass due to this initial

velocity and that would provide me the approximate dimension of the box.

So, let us say, what is the maximum displacement due to initial velocity. So, can I say that the

u0, remember what we had calculated it is , this is square remember

that this is 0. Because there is no initial displacement only velocity the maximum

displacement would be simply velocity divided by ωn.

So, it would be 7.66 divided by ωn and , which is 10 divided by 0.1. And that

gives me a value of 0.766 meters, which is basically 76.6 centimeters. Now, of course this is

the fictitious value and the realistic value would differ.
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Now, remember the maximum displacement is now this u0 and it could go in either direction.

So, the box dimension or the box height should be at least 2 times this displacement. So, at

least 2 times this 76.6 which gives me 153.2, so let us provide a box height of 160

centimeters.

So, this I have just demonstrated you a typical application of this kind of system, you might

think this is very trivial and we are talking about a small stuff here. But the same principle

could be extended to any kind of system and it is the shipping of expensive items is a big

thing.

Let us say, if you are shipping something, you know of the order of value of in a million or

billions of dollars, you would not want to skip just providing proper packaging. So, it

becomes a very important issue.
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Now let us come to second example. In the second example, we are going to discuss the

model of a car. So, let me draw here, let us say, I have a car now, typical mass of a car might

be 1000 to 2000 kgs. Of course, it depends on the size of the car as well, let us say it is a

midsize car.



So, let me consider this is a car, which is has a mass of 1500 kgs and the suspension and the

tires of this, I am going to represent it with a spring here and the damping in that suspension

tire, I am going to represent with a damper here.

Now it is given to you then, when it is at rest, this car, this spring is deflected. So, initially it

is deflected by, let us say 10 centimeter, which I can write as 0.01 meters and it is critically

damped. So, what do you need to find out, what is the damping coefficient of the system, the

value of c, what is the damping in the system?

Now and what is the frequency of vibration. Now, in the second case what you need to do,

this car is now being occupied by 4 people and weight of each person or the mass of each

person is 75 kg. So that for 4 people they would add around 300 kgs of mass. So, the total

mass becomes 1800 kg.

You now need to tell me after these 4 people occupy the car what happens to the value of

damping ratio? Now important thing to understand here is that the damping coefficient is the

property of the system or the structure and it does not depend on the mass or the stiffness

constant.

However, the damping ratio ξ is which ratio of c / ccritical and it depends on the mass of the

system, because c is constant and this I can write as 2mωn. So, it depends on the mass of the

system.

So, initially it was critically damped. So, the value of ξ would be 1 right, when we increase

the mass of the same system, remember that damping would still remain constant c value.

However, when you increase the mass m the damping ratio or ξ would decrease.

So, it would become under damped and it might start oscillation in the system. Let us goes to

one step at a time. So, for the first part a.
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Let us say this is part a; it is a critically damped system, so ξ = 1 and ξ = c/2mωn. But it is

said that I first need to find out what is the stiffness of the system and it is said that under the

weight of the vehicle it deflects by 10 centimeters.

So, can I say that, initially k times 10 centimeter which 0.01 m, this is equal to what is the

weight of the body 1500 × 9.81. So, from here I can calculate k as 0.01 and frequency I can

also calculate.

Or instead of doing that let us just do this write ωn by k by m and I can write this as .

Now c would be, ξ × . So, k, I know is nothing but 1500×9.81/0.01 and then I have m

which is again 1500. So, I can get the value of c from here. Now once that is known, I can

also find out the value of ωn from here and then Tn from here.

In the second part, what I am going to do. Now, the mass is increased correct, once the mass

is increased and then the frequency is also going to change because that in turns also depends

on the value of k or m. So, the mass changes and the frequency changes.



So, what I am going to do, I am going to take but the thing that is not going to change is the

damping coefficient. So, ξ2/ξ1, if I take the ratio, I will get that as m1ωn1/m2ωn2. Now in this

case, I can further write this as .

And remember that the k1 or the stiffness of the system is not being changed only the mass is

being changed. So, I can further write this as 1500 / 1800, which is nothing but, so this would

be 0.833. So, ξ1 is 1 and this would be nothing but 0.833, which you can calculate, and you

can write this as 0.91.

So, damping from the value of one it decreases to 0.91, it becomes an under damped system

and it would under the action of force or under the action of initial displacement or velocity it

can now vibrate.

So, I hope these both problems explained you the principles of free vibration and help you

apply those concepts to real life problems. You can extend this knowledge to solve different

type of problems in the free vibration.

Thank you.


