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Hello everyone, welcome to the lecture. In the last lecture, we started discussing about 

polyatomic molecules. We discussed about normal modes and looked into the spectrum of water 

and carbon dioxide. So, this is the spectrum or IR spectrum of water and this is the IR spectrum 

of carbon dioxide. So water has 3N - 6 that is 3 times 3 - 6 that is 3 vibrations, because water is 

nonlinear and also 3 peaks are observed in the IR spectrum for carbon dioxide because carbon 

dioxide is linear there are 3N - 5 that means 3 times 3 - 5 that is 4 vibrations. However, only 2 

peaks are observed in the IR spectrum. 
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So, in this lecture, we will discuss the selection rules for vibrational spectroscopy and how these 

can be determined from the symmetries of the vibrational normal modes. The gross selection rule 

remains the same as that of the diatomic molecule. That is, the dipole moment must change as 

the vibration passes through the equilibrium position. Mathematically this can be expressed as 

dmu dx at equilibrium position not equal to 0 where x is the displacement from the equilibrium 

position given by r - r equilibrium. 

 

This selection rule is identical to that of a diatomic molecule except that the displacement is now 

a combination of the atomic coordinates that is the normal coordinate. So the symmetric stretch 

of carbon dioxide, so let us draw the symmetric stretch. So, here both the CO vibrations are in 

phase. So, this symmetric stretch of carbon dioxide is higher inactive, as it does not generate a 

dipole moment at any point during the vibration.  

 

This explains why there are only 2 vibrational bands in the infrared spectrum of carbon dioxide 

rather than 4 one is missing, as the 2 bending modes are degenerate. And the second is missing 

as the symmetric stretch is higher inactive. So, now we will discuss the symmetries of vibrational 

wave functions. We want to look at the symmetries of the vibrational states in order to determine 

the selection rules for IR spectroscopy, we will be considering the vibrations of water.  

 



So, we see the water molecule in this fear and we will determine which water vibrations are 

higher active. Before we go into the details, we should understand that the application of 

symmetry arguments to molecules has the origin to something known as group theory. We would 

look into the basics of group theory from our more qualitative level, we will start with the 

elements of symmetry. 

 

So let us look into the water molecule in water, the rotation of the molecule by 2pi / 2 radians. So 

if you rotate this molecule along this axis by 2pi / 2 radians, it produces an identical 

configuration to the observer. So, if I write this as H 1 and H 2, and if I do our 2pi / 2 rotation 

around the axis, what I get is H 1 on the right side and H 2 on the left side, but because these 

hydrogen atoms are indistinguishable, we cannot distinguish between the conformer before the 

rotation and the conformer after the rotation. 

 

In other words, rotation of any molecule by 2pi / n radians, where n can be 1 2 dot dot dot up to 

infinity about an axis is produces an equivalent configuration, which to a stationary observer is 

indistinguishable from the initial 1, the molecule has an enfold axis of symmetry and the symbol 

for such a symmetry is given by C n. So, like C n, there are other elements of symmetry if a 

molecule has a plane of symmetry. 

 

Such that reflection of all the nuclei through the plane to an equal distance on the opposite side 

produces a configuration indistinguishable from the initial 1, it is known as the plane of 

symmetry and the symbol for such symmetry is given by sigma. So, let us look again into water. 

So, in this figure, the axis are labeled. So, we have this as the z axis and this as the y axis. So, the 

water which is a planar molecule. 

 

 the vertical axis in this plane is the z axis and the horizontal axis is the y axis and the axis that is 

going below and up the plane of the water molecule is the x axis, the subscript v in this sigma 

stand for vertical, which implies that the plane is vertical with respect with the highest full axis 

that is the C 2 axis or the z axis in this case, and this defines the vertical direction. Moreover, all 

the molecules possess the identity element of symmetry. 

 



So, this identity element is given by I. So, there are several other symmetry elements for more 

complex molecules more complex than water. However, as we limit our discussion to water, the 

elements of symmetry, that water has our C 2 sigma v along the x z plane sigma v along the y z 

plane and I. The symmetry elements of a molecule constitute something known as the point 

group. The point groups are so called because when all the operations of the group are carried 

out, at least one point is unaffected. In this particular case of water, any point on the C 2 axis is 

unaffected. 
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So, as water contains 1C 2 axis, so, water contains 1C 2 axis and 2 sigma Plames of symmetry all 

of which contain the C 2 axis water belongs to the C 2v point group. If the element of symmetry 

of the wave function is preserved during a symmetry operation, the symmetry operation has no 

effect on the wave function. And because the symmetry operation has no effect on the wave 

function, we can write psi v which is a wave function after the symmetry operation remains the 

same, that is + 1 times psi v.  

 

Thus we can say that psi v is symmetric to the symmetry operation, on the other hand, if the 

wave function changes sign by carrying out the operation, so, psi v changes sign during the 

operation. So, it becomes - 1 times psi v we can say that psi v is anti-symmetric to the symmetry 

operation. So, for the water molecule the C 2 and the sigma v x z operations have no effect on 

the wave function.  

 



So, we can create something known as the character table where the elements that is this + 1 or - 

1 of this character table are known as the characters of symmetry operation with respect to the 

symmetry operation. So, here we show the character table of water or the C 2v point group, the 

character with respect to I must always be + 1 because this is an identity operation. We can see 

that sigma v y z is generated from C 2 and sigma v x z that means, if we have the water molecule 

and we perform the C 2 operation and also perform the sigma v x z operation. 

 

Then what we end up with is sigma v y z operation. So, thus the characters with respect to sigma 

v y z is the product of characters with respect to C 2 and sigma v x z. So, we can see here that 

when C 2 and sigma v x z both are + 1 the sigma v y z is + 1 when they are both - 1 the product 

again is + 1. However, when this C 2 is + 1 and sigma v is - 1 the product is - 1 and here also 

when C 2 is - 1 and sigma v is + 1 then sigma v y z here the product is - 1. So, each of these 4 

rows of characters is called the irreducible representation. 

 

This is the irreducible representation of the group. And for convenience, each is represented by a 

symmetry species that is A 1 A 2 B 1 and B 2. The A 1 species is said to be totally symmetric, 

since all the characters are last 1. The other 3 species are not totally symmetry, the symmetry 

species levels are conventional A or B indicates symmetry or anti symmetry respectively to C 2. 

So, we can see, whenever C 2 is + 1, we have A and whenever C 2 is - 1 we have B. Similarly, 

the subscripts 1 and 2 indicates symmetry or anti symmetry with respect to the sigma v x z 

Plame. So, we can see whenever the sigma v z is + 1 we have 1 and when it is - 1 we have 2. 
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The water molecule has 3 normal modes of vibration as shown in this figure. So, we can label 

these modes. So, the first one is the symmetric stretch. The second one is the asymmetric stretch, 

and the third one is the bending mode. So, using the C 2v character table, the wave functions psi 

v for each can be easily assigned to symmetry species. The symmetric stretch can be identified as 

the displacement in both this OH bonds.  

 

Where both these OH bonds are in phase the displacements are phase with each other the normal 

mode has A 1 symmetry, because now, if we plot the C 2 axis as well as if we plot the sigma v x 

z plane it produces or the symmetry operations produce identical configurations. So, this has A 1 

symmetry. So, we can see this is because the mode is symmetric to both C 2 and sigma v x z 

symmetry operations.  

 

The asymmetric stretch shown here can be identified as the vibration in which the displacements 

of the OH bonds are out of phase with each other. The normal board is anti-symmetric with 

respect to C 2 or the sigma v x z Plame and because it is anti-symmetric to both C 2 and sigma v 

x z. So, because of the anti-symmetry to C 2 we have B and anti-symmetry to sigma v we have B 

2. So, it has the B 2 symmetry, the bending vibration is the vibration in which the HOH angle is 

increasing and decreasing.  

 



As we can see, this normal mode is also symmetric with respect to C 2 and the sigma v x z plane 

and because it is symmetric to all the symmetry operations, it has A 1 symmetry. So, now, let us 

look at the ground vibrational state. 
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That means at v = 0 and the wave function of this v = 0 can be represented by psi 0, which is 

proportional to exponential of - Q square / 2. So here Q is the mass weighted coordinate. If we 

apply any symmetry operator to this function, then Q matching sign. For example, the anti 

symmetric stretch with B 2 symmetry is anti symmetric with respect to the C 2 operation. 

However, the Q square is always symmetric and thus this psi 0 is totally symmetric or we can 

say psi 0 is A 1 for water.  

 

Now, let us look into the excited vibrational states. So the first 2 vibrational excited states can be 

represented by psi 1 and psi 2 so psi 1 can be represented as proportional to Q times exponential 

- Q square / 2 and psi 2 is proportional to Q square - 1 times exponential – Q square / 2. Thus psi 

1 is the product of Q, which has  b 2 symmetry. And this part is psi 0 and psi 0 has A 1 

symmetry thus psi 1 for the asymmetry stretch has B 2 times A 1 that is B 2 symmetry overall, 

the V equals 2 state has the A 1 symmetry like the ground state.  

 

Because here we are dealing with only Q square. So it can be seen that in fact psi v has B 2 

symmetry when v is odd, and A wants symmetry when v is even the bend and the symmetric 

stretch, both has A 1 symmetry. And since A 1 times A 1 is also equal to A 1, all their states 



have A 1 symmetry. So, how does identifying the symmetry of the vibrational states help us 

identify the selection rules? We know that the intensity of a transition is proportional to the 

square of the transition dipole moment. 
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And this transition moment is given by integration of the final state. That is psi star final, the 

dipole moment operator, the initial state of the psi i d tau by definition, an integral is just a 

number just symmetry operations have no effect on it. But the integrand maybe operated by the 

symmetry operators, and if there is any symmetry operator, that changes the sign, it will change 

the sign of the whole integral. So there is a contradiction unless the integral is 0. 

 

So the integrand must have and overall A 1 symmetry in other words, it must be totally 

symmetric. If it has to be nonzero the dipole moment mu because we have this dipole moment 

operator so, this mu can be broken down to mu x mu y and mu z. So, this mu x can be written as 

a sum of the charges times the x coordinate of the charges. So, based on the choice of our axis, 

so this x, y and z coordinates of the C 2 v has B 1 B 2 and A 1 symmetry.  

 

So, the mu x, mu y mu z, they also have B 1 B 2 and A 1 symmetries as we have already 

discussed, the vibrational states of water has either A 1 that is when v equals even or B 2 that is 

when v equals odd symmetries. So, we can construct the possible symmetries of the integrand of 

the transition dipole moment. 
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So, here we are constructing the possible integrand. So, here we have the components of the 

dipole moment. And in the second column we are having the symmetries of vibrational 

transitions. And in the third column, we are constructing the entire symmetry of the integrand. 

So, we can see that mu x is B 1. So, if we have a transition from A 1 to A 1 then our triple 

product becomes A 1 times B 1 times A 1 and this is B 1 and as we know the total integrand has 

to be A 1.  

 

That means, this case is forbidden. So, we have to find out where this integrand is totally 

symmetry. So, we can see that there are only 3 cases where the transitions are allowed as the 

number of vibrations in water is equal to the number of allowed transitions, all the vibrations in 

water are higher active. Thus, in today's lecture, we have used the symmetries of the vibrational 

states to gain insight about the selection rules. 


