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Polyatomic Molecules I 

 

Hello everyone welcome to the lecture today we will discuss polyatomic molecules. In the first 

lecture on rotation of spectroscopy we discussed that for an extended rotating object the angular 

velocity Omega and the angular momentum L need not point in the same direction.  
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In such cases the angular momentum is related in general to the angular velocity by l equals I 

Omega where L and Omega are vectors and the I is a tensor. So, tensor is represented generally 

by a matrix in a 3 dimensional space I is a 3 by 3 matrix which means it has 9 components thus L 

equals I Omega vector L equals I which is a tensor Omega can be explicitly defined as in the 

XYZ Cartesian coordinates I can write L as LX LY LZ equals I will write first Omega which is a 

vector which is Omega X Omega Y Omega Z and then I have the tensor which is a 3 by 3 matrix 

I have I XX I YY I ZZ . 

 



So these are the diagonal elements and I have 6 of diagonal elements that is I XY I XZ I YX I 

YZ I ZX I ZY the values of the elements depend on the choice of the axis so the center of mass 

of the molecule. For a particular choice of axis this matrix can become a diagonal matrix that is 

the half diagonal terms that is the 6 of diagonals that we have will all become 0 but the diagonal 

terms will be non0. So, these axes are called a b and c axis. 

 

So the moment of inertia will be I a, I b and I c. so, this I a, I b and I c represent the moment of 

inertia along the a, b and c axis. Conventionally the axis about which the moment of inertia has 

its maximum value, so let us say the moment of inertia I can write I a I b I c, so if the moment of 

inertia has the maximum value it is known as the c axis. So, we can write I c is maximum the 

axis about which the moment of inertia has its lowest value is known as the a axis, so we can 

write I a is minimum. 

 

So these axis a and c along with the other axis that is b are known as the principal axis of inertia, 

so we can write a, b and c as the principal axis of inertia and the corresponding moments of 

inertia that is I a, I b and I c are the principal moments of inertia thus any rotating body or any 

rotating molecule has 3 values of I I a I b and I c and we can write I c greater than equal to I b 

greater than equal to I a. 
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So, now we will start looking into these polyatomic molecules. So, we will start with the linear 

molecule, so linear molecule are either diatomic or linear polyatomic molecules, so there are 

special cases where one of the axis is the axis of the molecule. And it passes through the center 

of mass of the molecule and the other 2 axes are perpendicular to the molecular axis. So, the axis 

along the molecular axis the moment of inertia along that axis that is I a here equals 0 and the I’s 

along the other 2 directions that is I b and I c are equal. 

 

So, these molecules can be represented as I a equals 0 I b equals I c in other words there is only 

one value of I because I b equals I c, so there is only one value of I for linear molecules and 

examples of polyatomic linear molecules are HCl OCS CO2 but we should remember that CO2 

has no dipole moment so it will not show any rotational spectrum. So, in general any molecule 

can be classified as 3 top or rotor categories. 

 

So, one is spherical top or spherical rotor then we have symmetric top or symmetric rotor and 

finally we have asymmetric top or asymmetric rotary.  
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So, we will look into these categories one by one, so first let us focus on spherical rotor. So, 

spherical rotors can be octahedral or tetrahedral molecules they are called spherical rotors as all 3 

principal moments of inertia along the 3 principal axis are equal. So, we can write I a equals I b 



equals I c as all the I’s are equal the choice of axis is immaterial. So, the examples of spherical 

rotors are methane that is CH4 SF6 and C 60 that is fullerene. 

 

So CH4 is a tetrahedral molecule SF6 is an octahedral molecule and C60 his icosahedrons. So, 

these molecules as you can see have no dipole moment and again they are not going to show a 

rotational spectrum.  
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So, let us move into symmetric rotors for symmetric rotors 2 of the principal moments of inertia 

are equal. But the third one is unequal that way we can think that linear molecules where we had 

I a equals 0 I b equals I c so this is for linear molecules we can think that this linear molecules 

are a special case of symmetric tops. So, for symmetric tops or symmetric rotors we have 2 types 

we have prolate symmetric top and oblate symmetric term. 

 

So, we will first discuss prolate symmetric term. So, examples of prolate include CH3Cl, so for 

prolates I a is less than I b and I b is equal to I c, so the larger moment of inertia they are equal 

and I a is smaller than both I b and I c which are equal. So, just to reiterate the rotational axis 

goes through the center of mass but not to the central carbon atom for this molecule that is 

CH3Cl this is because these 3 hydrogen atoms actually are not in the same plane as that of the 

carbon atom so, the other example so prolate top includes CH3 CN and also SF5CL.  

 



So, the other kind of symmetric top is the oblate symmetric term examples of oblate we can write 

CHCL3 that is chloroform. We can have BF3 BCL3 or benzene. So, for oblates we have i a 

equals I b and I a and I b and less than I c. So, you can see in prolate we had I a which is less 

than I b equals I c what it is oblate the largest moment of inertia is I c is unequal to the other 2 

that is I a and I c. so, unless one calculates the moment of inertia along the principal axis it will 

not be obvious whether a molecule is a prolate or oblate. 

 

However prolate or oblate normally represents the molecular shape. So, we can say the prolate is 

rod like and oblate is disk like. So, let us take the examples of CH3Cl and CHCL3. So, let us 

draw the molecules so we have carbon chlorine and 3, hydrogen's. So, in the first case and in the 

other case we have carbon hydrogen and 3 chlorine atoms. So, as we know CHCL3 that is oblate 

and CH3CL this here that is prolate. 

 

So, if we look carefully into CH3CL the major mass is coming from the carbon atom and the 

chlorine atom or we can say the major mass is distributed along the CCL bond. The masses of 

hydrogen's are negligible as compared to that of the carbon and the chlorine atom. So, it has 

more of a rod-like shape but the major masses are distributed along the CCL bond. On the other 

hand if we consider chloroform the major masses are distributed between the 3 chlorine atoms 

and the carbon atom. 

 

So CHCL3 or chloroform has a disk like shape so we can also see that the linear molecule can 

also be considered as prolate as a linear molecule has a rod like shape, so it also matches the 

shape and we can say I a which is equal 0 is less than I b equals I c.  
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So, the final category we have is asymmetric top or asymmetric rotor. In fact a vast majority of 

molecules are asymmetric. So, examples of asymmetric top are water there is H2O hydrogen 

peroxide or the one that is shown here in this figure. So, for a symmetric rotor we can write I a 

not equal to I b not equal to I c and also I a is the lowest value of the moment of inertia so I a is 

less than I b which is less than I c.  
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So, let us go back to the linear polyatomic molecules. In fact we have already solved the 

rotational problem for the linear system in case of diatomic molecules. The solution is the same 

as the diatomics it does not matter how many atoms are there on the line. The rotational spectrum 

will look the same. The characteristics of these molecules in terms of moment of inertia are 



identical. So, we can write I a equals 0 I b equals I c this means the rotational energy levels for a 

linear polyatomic system is going to be identical as the diatomic molecule. 

 

So, for diatomic molecules we got nu bar J equals B times J times J + 1 if we ignore the 

centrifugal distortion. The rotational constant B as we know is inversely proportional to the 

moment of inertia, so we can write B is inversely proportional to the moment of inertia this 

moment of inertia here is associated to the b and c axis because I a equals 0 so which are the 

same so I b equals I c and because I b equals I c they cannot be distinguished. 

 

The difference between a diatomic linear molecule and a tri atomic linear molecule is the 

triatomic molecule is larger. So, the moment of inertia will be greater as we know I is given by 

summation small i m i T i squared, so the more atoms are there on a line the greater will be the 

moment of inertia. But does this larger moment of inertia reflect on the rotational spectrum. So, 

because I is greater it means the rotational constant B is going to be smaller. 

 

As the spectral lines are separated by 2 B or the spectral lines are to be apart the spectral lines in 

polyatomic systems will be much closer together that means they are much closer compared to 

what they were in case of the diatomic system. This is similar to a particle in a box system the 

larger the box the closer are the energy levels in polyatomic molecules the rotational wave 

function can spread over much larger region. 

 

So, the energies will be smaller and the energy levels will be closer together. So, let us look into 

a molecule a tri atomic linear molecule that is OCS, so we have a trinomial in your molecule 

OCS, so OCS has one oxygen atom one carbon atom and a sulphur atom all in a line. The 

sulphur atom is much heavier than both the carbon and the oxygen atoms. So, the center of mass 

will lie somewhere along the C is bond. 

 

So, we can define the distances r 0 r c and r s, such that r 0 is the distance by how much the 

oxygen atom is separated from the center of mass and we can say the carbon atom is r c distance 

away from the center of mass and the heaviest return that is a sulfur is r s distance away from the 



center of mass. So, the condition that enables us to identify the center of mass is in oxygen r 

oxygen so it is not 0 that is O, m carbon r carbon equals m sulphur r sulfur. 

 

So we are interested in the structure of the molecule remember rotational spectroscopy gives us 

the structure in terms of bond length. So, we are not really interested in what the distances are 

from the center of mass but we are interested in what the bond lengths are. So, we can define the 

bond length in terms of the distances. So, we can write r co equals r o – r c in other words I can 

write r o equals r co + rc. So, we can also write r cs equals r s + r c. 

 

So from this we can write r s equals r cs – rc, so now if we compute the moment of inertia let us 

see what we get. So, using this expression and these 2 expressions we can write mo r co + rc + 

mc rc equals m s rcs - rc so from here we can write if we take rc common so we can write m o + 

mc + m s equals m s m cs - m r co. Now if I write the total mass that is m o + mc + m s equals 

capital M I can write m rc equals m s rc s - m r co in other words I can write rc equals m s r cs - 

mo r co divided by capital M. 

 

So now we know that the moment of inertia for this linear traffic molecule is given by I equals m 

o r o squared + m c r c squared + m s r s squared. So, now we can write m o and r 0 we can write 

as r co + r c squared then I have mc rc squared + ms and rs I can write as r cs - rc squared. So, 

now we can simplify and write m o r co squared + m o rc squared + 2 m o r co rc + m c r c 

squared + m s r c s squared + m s rc squared - 2 m s r cs r c. 

 

So, if I take the rc square common I can write m o + mc + m s + m o r co squared + m s r cs 

squared - 2 r c m s r cs – m o I co so now we have already found out an expression for rc, so if 

we replace rc with this expression what we will arrive at is I equals mo rc squared + m s r cs 

squared - will have mo rco – mc rcs all squared divided by capital M where capital M is m o + 

mc + ms. Now the question is can we determine the 2 bond lengths the co and cs and the cs bond 

length from the calculation of the rotational constant V from the spectrum. 

 

Because if we get b we know we can get I and I is a function of the bond length. So, the question 

is can we obtain both the bond lengths. 



(Refer Slide Time: 27:55) 

 

If we only have the value of B for OCS that is for 60 O 12 C 32 S we cannot get both the bond 

lengths. For example the B for this molecule is 0.202864 wave numbers but the moment of 

inertia has 2 unknowns in it the 2 bond lengths. So, we cannot from one value of rotational 

constant B we cannot get the bond lengths, so we need 2 values of B so we can get a second 

value of B if we isotopically substitute the sulphur atom by 34 sulphur. 

 

And the value of this isotopically substituted molecule is 0.197910 because it has different mass 

that means it has different moments of inertia. So, it will have a different rotational constant as 

we see instead of 0.202864 it is now 0.197910 but as we have discussed on the lecture on 

isotopic substitution that the bond length will not be different that is the structure of the molecule 

will not differ for the isotopes.  

 

Thus with the 2 rotational constants we can set up 2 different equations in which we have 2 

unknowns and then we can solve them simultaneously to get the co and the cs bond length. So, if 

we solve we will get is r co as 1.165 angstrom and r cs as 1.558 angstrom.  

 

 


