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Radiation Shields

In many practical applications you would see that you would like to prevent a surface

from receiving radiation, or a surface losing its energy through radiation. Let us take the

first  point and you do not want a surface to receive energy by radiation.  One of the

practical  examples  where  you  encountered  this  situation  is  for  cryogenic  storage  of

liquid, of cryogenic storage of liquids which are at a very high very which have a very

low boiling point.

Let us see you have liquefied air or you have liquefied nitrogen ammonia and so on. And

you are storing them in containers you try to insulate them as much as possible from the

outside, but in order to reduce the radiation which is coming from the ambient to the tank

which is stored liquid nitrogen. Sometimes it is advisable to put an shield around the

container. 

So, if you have a spherical container for storing liquid nitrogen what you do is, these

spheres are never I mean the walls are not solid. You may have on the inner sphere which

holds the liquid nitrogen another layer of a material which surrounds the sphere. In this

outside sphere the outside covering of the main tank this significant, this significantly

reduce the radiative heat that comes to the sphere from the ambient and thereby heating

up the liquid nitrogen inside. 

So, these kind of protective shields are known as radiation shields, so in order to choose

the material of construction for a radiation shield which is going to protect the inner core

which you would like to keep at a low temperature that is very important. We need to

know what should be the radiative property of the radiation shield.

So, radiation shield is something which hinders the flow of heat through it, hinders the

flow of radiative heat through this. Thereby protecting the cooler temperature, the cold

temperature, the cold storage inside and we are going to find out what is the property that

needs to be: what is the property of the material of this radiation shields. One property is



obvious; that means, it should be opaque; that means, the radiation there is not going to

be any transmission of incident radiation through the shield to the other side where you

would like to keep the temperature cold. So, the very first property of a radiation shield

is that it is it must be opaque in nature.

So, we take care of the surface property that it is to be opaque transmitivity should be 0.

But what about the emissive property does it have to have a high emissive emissivity or a

low emissivity, which one is going to be preferred for a radiation material. So, that is the

one which we are  going to  study now, what  would be the emissive  property  of  the

material  that is to be used for radiation shield. And what kind of modification to the

equation we need to have in order to incorporate the presence of radiation shield in a heat

radiation problem.
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So, let us look at the case in which you have a surface over here which is the plate which

is a plate I call it as plate 1 which is maintained at a temperature T 1, it is property is

epsilon 1, area is A. And then you place another one which is the radiation shield and we

I call it as surface 3. So, the temperature is T 3 on this side and T 3 on the other side. Let

us for generalization sake assume that the emissivity of the material 3 radiations shield

which is facing 1 is epsilon 31, and the emissivity of 3 which is facing 2 is epsilon 32.

And this is let us say the plate 2, where the temperature over here is T 2 the emissivity is

epsilon 2 and the area is A. 



So, this is we are considering radiation heat transfer between two so, we are considering

radiative heat transfer between two very large opaque plates parallel to each other. And

we put a radiation shield in between so this is more or less what we have in this. So, the

heat flow from 1 to 2; therefore, Q 1 to 2 must be equal to whatever be the potential of

this and whatever be the potential of plate 2, if they were black bodies so it is E b 1

minus E b 2 by the sum of all the resistances. 

So, what are the resistances? One is R 1 the second one is R 1 to 2 and the third one is R

2 ok. So, if there is no radiation shield let us first consider this and then we will consider

the radiation shield in between 1 and 2. So, if there is no radiation shield in between 1

and 2 what you would get as Q 1 to 2 as sigma T 1 to the power 4 minus sigma T 2 to the

power 4 and the first resistance, so we do not have this anymore. So, the first resistance

is going to be the surface resistance to radiation for surface 1 which would be 1 minus

epsilon 1 by A1 epsilon 1. And the third resistance is going to be the surface resistance of

2 which is 1 minus epsilon 2 by A 2 epsilon 2 and the right now we do not have this, we

do not have the radiation shield.

So, the radiative exchange between 1 and 2 the resistance for that would be 1 by F 1 F 1

2; 1 by A1 F 1 2 ok. These three are going to be the resistances and for parallel plates A1

would be equal to A 2 let us say this is equal to A. And of course, if the parallel plates are

close to each other in that case F 1 2 would be equal to 1. So, therefore,  all  energy

emitted by 1 is going to strike 2 if these two are very close to each other. So, no energy

will escape through this if there very close to each other.

So, F 1 2 is equal to 1. So, what you would get? Q 1 to 2 would be equal to A sigma T 1

to the power 4 minus T 2 to the power 4 divided by 1 by epsilon 1 plus 1 by epsilon 2

minus 1 this is in watts. So, once you A 1, A 1, A 2 are same; so I take the A1 A 1 the

numerator. So, the numerator becomes A times sigma T 1 to the power 4 minus T 2 to the

power 4 and what I have here is 1 by epsilon 1 minus 1 plus 1; 1 by epsilon 2 minus 1.

So, therefore, the denominator becomes 1 by epsilon 1 plus 1 by epsilon 2 minus 1.

These many watts that is the heat transfer the total amount of heat transfer radiative heat

exchange between 1 and 2. But in absence of a shield, now let us say we have a shield in

between these two now.



So, I will draw this circuit diagram over here. So, for this one is going to be E b 1, this

one is going to be J 1 and the resistance here is 1 minus epsilon 1 by A epsilon 1, so I

take the A to be the same. Then between J 1 and J 3 1, so this is J 3 facing 1 this should

be 1 by A F 1 3 this is the resistance. Then we have between J 3 and E b 3, so this is E b

3 and this resistance;  obviously, is going to be 1 minus epsilon 3 facing 1 by A1 A

epsilon 3 facing 1 epsilon 3 facing 1 this is the one. And then from E b 3 I will have

another resistance for J 3 2 which is just over here. So, this is J 31, this is J 3 2. And what

is J 3? The resistance that connects E b 3 and J 32 must be equal to 1 minus epsilon 32

unlike this case A epsilon 32. 

Now, J 3 2 is going to be over here and this is J 2 and this is simply going to be 1 by A F

32. So, F 13 and this is 1 by A32 and this J 2 this J 2 is connected to E b 2 where the

resistance in this case would be 1 minus epsilon 2 by A epsilon 2. So, what you see here

is once again you start at this point which is E b 1, over here this is J 1, J 1 to J 31 that is

the radiosity of surface 3 facing 1. Then you have for this one you have E 3 E b 3; E b 3

and J 3 2 is the radiosity of surface 3 facing 2; then J 32 and you have to find out what is

J 2 and J 2 and inside it is E b 2, so the number of nodes that you have are 1, 2, 3, 4, 5, 6.

So, what you have then is 1, 2, 3, 4, 5, 6 you have an extra. Let us see 1 2 E b 1 to J 1 3 J

3 1 E b 3 is this 1. So, 1, 2, 3, 4, 5, 6, 7; 1, 2, 3, 4, 5, 6 and 7 nodes and in each of these

nodes between E b 1 and J 1 you have the surface resistance to radiation between J 1 and

J 31. You have the resistance formula for the enclosure J 3 1 and E b 3 surface resistance

and so on. So, you get the complete picture for this.
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Now if I write the same Q the same formula like this one for this. For radiation shields

the formula would simply be Q 1 is A sigma T 1 to the power 4 minus T 2 to the power 4

and the sum of all resistances. So, here we know where we assume that F 13. Since the

plates are long and parallel they are going to be equal to 1 everything is in series.

So, the resistances, so this is the first resistance since F 1 3 is equal to 1 and I have taken

A to the denominator. So, this is going to be 1 plus 1 minus epsilon 31. Once again this

would be their this will have a value equal to 1 this is going to be there. This will be

there this value is going to be equal to 1, and this is going to be present in the final

expression. So, I have the first 1 then 1 and the third one, the fourth one, then 1 and then

the last 1. So, you would aim through the use of this shield is to reduce the amount of

heat that one is going to lose or one is going to gain depending on what application you

have in mind.

So, when are you when you are choosing the material of construction for the radiation

shield the only value that you have to consider is the emissivity ok. So, if you look at the

expression once again then you would be able to find out you would be able to tell like

what is the property that you want. So, let us take a look at the expression once again

your epsilon 1 and epsilon 2 are known are known to you. 

So, definitely you would like to use a material of low emissivity for a shield, so this is

what you would prefer. It becomes even more apparent if you simply write this Q 1 as if



you take this as 1 by epsilon 1 then this 1 by epsilon 2 is this and minus 1. So, just a bit

of  reorganization  would  give  you that  the  heat  flow is  going  to  with  this  and  this.

Compare that with what we have obtained for the case of Q 12 when we did not have any

when we did not have any shield. So, because of the presence of the shield we have an

extra term in the denominator and additional resistance provided by the shield. 

And looking at the expression you can clearly see you would like to have as small a

value of emissivity as possible for the shield material such that this resistance becomes

significant. So, this justifies our previous statement that we would like to have for the

shield a material of very low epsilon. So, we want low values of epsilon 31 and epsilon

32 to make our shield and this part this term if you compare it with this one this term

provides the additional resistance due to the presence of the shield, shield material. So,

for this special case and we can make a special case when if epsilon for all the surfaces

are equal. Then Q 1 would be equals A sigma T 1 to the power 4 minus T 2 to the power

4; 2 of 2 by epsilon minus 1 ok.

So, if there are if there are N parallel shields, then this one can be generalized as Q for N

number of parallel shields is A sigma T 1 to the power 4 minus T 2 to the power 4 and

this is going to be N plus 1; 2 by epsilon minus 1. So, if epsilon is same that is the special

case you get this expression where it is this part is simply going to be 2 by epsilon minus

1. And here you are simply going to get going to get 2 and therefore, the Q N the in the

case of N fields the formula is going to be this, where this is N plus 1 and this is 2 by

epsilon minus 1. 

So, this is more or less what I wanted to cover in radiation shields in your text you would

see that if the radiation shields are also common for tubes as well. So, you have a tube

which you would like to protect.  So, you put another shield over here and the same

concept  would also  be  applicable  that  is  the  radiation  shield  is  going to  provide  an

additional resistance to radiation for the case of shield.

But  there  you  just  have  to  keep  in  mind  that  since  the  geometries  geometry  is  a

cylindrical one. So, your two areas the area of the tube side and area of the protection

radiation shield may not be equal and while writing the resistance you have to use 1 by A

tube F 1 2 in one case. And in the other case instead of A tube you have to write A shield.



So, if these are very close to each other you can make an approximation that A shield is

equal to A tube and you will get back to the same result that we have obtained just now. 

Otherwise  just  draw the  circuit  diagram in  all  these  cases  draw the  circuit  diagram

identify what is epsilon 1? What is A 1? If are they equal and not epsilon 1 epsilon 2

etcetera write the resistance to heat transfer in an enclosure and also write the resistance

for heat  transfer  the resistance.  The surface resistance to irradiation what is  1 minus

epsilon 1 by A1 epsilon 1?

So, and see whether they are collected in parallel or they are connected in series, are

those shields in the case of shields they are going to be connected in series one after the

other. And you simply have to add the resistances in order to find out what is the total

flow of heat in presence or absence of one or a number of shields. So, what have you do

is,  I  will  give  you  one  more  problem  to  practice  on  for  the  case  of  radiative  heat

exchange in an enclosure. Discuss some of the salient features and in the rest you have to

you are going to solve that problem. 

(Refer Slide Time: 23:32)

So, for this problem what we do is, we have chosen a cylindrical furnace. So, this is a

cylindrical  furnace  in  which  let  us  call  this  as  my  surface  1.  So,  it  is  area  is  A 1,

temperature is T 1, and it is a black body. So, F epsilon 1 is equal to 1.



So, it is a black body for the case the surface 2 is A 2 and it is temperature is T 2 and this

is also a black body. So, epsilon 2 is equal to 1, the surface A 3 is insulated ok. The

length, so this is a cylindrical furnace, the length is 0.3 meter, and diameter is also 0.3

meter. So, this is 0.3, and this diameter is also 0.3 meter ok. The surface A1 and A 2 the

end surface and the lateral surface are black. As you can see the way I have drawn it

epsilon 1 and epsilon 2 are both equal to 1. Since they are there they are since they are

black bodies and they are insulated as well ok.

The temperature of 1 is maintained is at 500 Kelvin, temperature at 2 is 400 Kelvin. I

will I will change this A 3 is insulated as I have drawn over here. So, let me state the

problem once again it is a cylindrical furnace whose length and diameter are equal. So,

this is 0.3 meter, this is also 0.3 meter the surface 1 and the lateral surface 2 are both

black; A1 is to be maintained at 500 Kelvin, A 2 has to be maintained at 400 Kelvin, the

last  surface A 3 is  insulated ok.  You have to find the net  radiation  heat  transfer  net

radiation heat transfer from each of the surfaces. And find the temperature of A 3 that is

you have to find: what is the value of T 3? It has been given that for such a system F 13

is equal to 0.072. 

So, F 1 to 3 is 0.172 the first thing that you have to do is you have to find out the

unknown view factors. So, F 13 is 0.172 so F 13 plus F 11 plus F 12 is equal to 1. Since

it is a plane surface F 11 is equal to 0. So, you get F 12 is equal to 0.828. You can also

write from reciprocity relation that A1, F 1 2 is A 2 F 2 1. And therefore, the unknown F

2 F 21 is A1 by A 2 times F 1 2, A1 is the circular area 0.3 whole square. A1 is this

circular area, times A 2 is the A 2 is pi D L. The lateral area pi D L pi into 0.3 into 0.3

times by square is 4 times F 1 2 is given as we have calculated this. So, this is equal to

0.207, so this F 12 F 1 to 2 is 0.207.

So, from symmetry from symmetry we can write F 21 2 to 1 equals F 2 to 3 is equal to

0.207. So, F 2 to 1; if it is 0.207 F 2 to 3 should also be equal to 0.207 because of the

symmetry of this case. 



(Refer Slide Time: 28:51)

So, this is A if I if I draw the circuit diagram for this case ok. Now E b 1 is equal to J 1

since they are 1 is a blackbody ok, E b 2 is equal to J 2 both 1 and 2 are black bodies. So,

therefore, E b 1 is equal to J 1 and E b 2 equals J 2 since they these are all these two are

black bodies. Additionally E b 3 is equal to J 3, but for a different reason not for a

blackbody since A 3 is  insulated.  Here A 3 is  mentioned A 3 is  insulated.  So, for a

different reason E b 3 is equal to J 3. However, we have some heat which is coming in as

Q 1, some heat where is coming as Q 2. And of course, in this case Q 3 is 0, since it is

insulated. 

So, the problem is pretty straightforward now. So, in order to find the net radiative heat

transfer from each of these surfaces let us found Q 1. Q 1 would be E b 1 minus E b 2; Q

1 is E b 1 minus E b 2; this one is in series with these two. So, taking an analogy from

electrical circuits it is going to be 1 by A 1 F 1 2 plus 1 over 1 by A1 F 13 plus 1 by A 2 F

2 3 to the whole to the power minus 1. So, when you put the values to be this is equal to

sigma T to the power 4 and this is sigma T 1 to the power 4; sigma T to the power 4.

And, when you put all the values in there you are going should get Q 1 to be equal to

143.46 watt, so that is what Q 3 is.

The next one is temperature of A 3 or in other words what is the temperature T 3 in this

case. In all such cases you need to find out what is J 3 and since J 3 is equal to E b 3, I

need to know: what is the numerical value of E b 3. Because the moment I know the



value of numerical value of E b 3; E b 3 is simply equal to sigma T 3 to the power 4 ok.

So, I should be able to find out what is T 3, so, the step the trick the requirement for this

specific type of problem is to find out what is J 3. And in order to obtain J 3 what I am

going to say is that to find J 3 the flow of heat J 3 from J 3 to J 1 by 1 by A1 F 1 3 must

be equal plus J 3 minus J 2 by 1 by A 2 F 2 3 should be equal to 0. That means, the

algebraic sum of the current or the in this case the heat at any node is equal to 0.

So, J 3 minus J 1 by the resistance and J 3 minus J 2 divided by the resistance must be 0

at steady state. So, if you do this when you put all these values in here you should be able

to see J 3 to be equal to 1811.4 watt per meter square. This is equal to E b 3 and E b 3 is

equal to sigma T 3 to the power 4. When you put the values in there you should get the

value of T 3 to be 422.7 Kelvin. So, this is another example of how do you, how you

convert the complex radiation exchange geometry to something which now you have the

analogy from electrical science and find out what is surface resistance to radiation.

What is a radiation exchange between these between the enclosures and then see which

is in which resistance is in parallel, which resistances in series. And the flow of heat is

simply going to be the potential difference based on the black body emissive potential

divided  by the  effective  resistance  between  those  two surfaces.  And everything  else

follows from there.  And in  some cases  you have  to  use the view factor  algebra  the

relations of the view factor and you also have to remember that for reradiating surfaces

the black body emissive power is equal to the radiosity for that surface. So, if you keep

all these in mind then the problem on these can be tackled without much of a problem.

So, we have one more class left and in that class we are going to I am going to mostly

talk about what happens, if the system the enclosure that we are talking about is filled

with a participating medium which is a very common occurrence where the gases present

in  the enclosure  would start  to  participate  in  the radiation  process.  It  would  start  to

absorb  some of  the  radiation  and  therefore,  it  is  going  to  violate  one  of  the  major

assumptions of the network method that the gases are not participating in the radiative

exchange process. 

So, that would conclude our study on radiation as well as our this course on heat transfer.


