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So,  we  were  discussing  about  the  dimensionless  form  of  the  momentum  equation,

dimensionless  form  of  the  energy  equation,  the  boundary  conditions  again  in

dimensionless forms; essentially for the case of fluid flow, the no slip velocity. And what

would be the condition on what will be the condition of velocity at a point plot from the

plate such that at that point the velocity is going to be equal to the local free stream

velocity outside of the boundary layer. And similarly, we are also looking at the energy

equation in what would the, what would be the form of the boundary conditions?

For example, what is going to T star that is the dimensionless temperature at any actual

location; but on the plate itself? So, T star at x star comma 0; that means, y star equals to

equal to 0 would be equal to 0 because of the way we have defined the dimensionless

temperature T star. But T star were T star was simply T minus T s by T infinity minus T

s. So, on the plate T is equal to T s; therefore, T star would be equal to 0. At a point plot

from the plate, the temperature of the fluid would simply be equal to T infinity and the

value of T star in that case would be equal to 1. 

So, we were looking at 2 equations to governing equations for 2 processes; one for heat

transfer and the other for momentum transfer. And we saw that the ones that separate, the

combination  of  terms  that  separate  these  2 equations  that  that  differentiates  between

these 2 equations are the presence of similarity parameters. One is the Reynolds number

for the case of momentum transfer and the second is Reynolds times Prandtl number for

the case of heat transfer. 

So, these are the only difference between Heat transfer and Momentum transfer. So, what

we  would  like  to  do  is  we  have  we have  proposed  then  that  if  we could  keep  the

Reynolds number to be the same for heat transfer as well as or momentum transfer and if

you can choose a hypothetical fluid with a Prandtl number to be equal to 1, then these

two equations dimensionless form of these 2 transfer equations are identical.



And if in addition, we assume that the flow is taking place over a flat plate, then the

governing equation the boundary conditions of the governing equations are also going to

be identical. So, that is the case of dynamic similarity which they tells us that that a for a

dynamic similar system, the expression of dependent variable for the case of momentum

transfer which is u star can be replaced by the replaced by the dependent variable of the

other equation which is T star.

And  therefore,  and  analogy,  a  similarity  and  equableness  between  the  momentum

transfer and heat transfer can be established to obtain expressions, known expressions of

one  dependent  variable  from the  known  expression  of  another  independent  another

dependent variable. So, will be look at that it will be very clear towards the end of this

class, how it is done. 

(Refer Slide Time: 03:54)

So, let us look at the this slide which was the last slide on the previous class, where I

have identified the governing equations, the similarity parameters, Reynolds number and

Reynolds and Prandtl number. This is for momentum; this is for energy and the boundary

conditions using no slip and a point plot from the flat plate, what would be the velocity

condition? The temperature at y equals to 0 and temperature at y equals to infinity.

So, with this knowledge when we by keeping the Prandtl number to be equal to 1 and

keeping the Reynolds number to be the same and assuming that the flow is taking place

over  a flat  plate;  everything in  this  equation  in  the between these equations  and the



boundary  conditions  are  identical,  so we have  a  similar  system,  dynamically  similar

system. 

(Refer Slide Time: 04:45)

So, what I am going to what we going to do is find out what is Reynolds analogy and

modified Reynolds analogy. So, for that I am going to look at the function what could be

the functional form of u star. I do not know what would be the exact form of it; but I

know that if I could write if I could write the u star if I could write the functional form of

u star, it should contain the independent variable x star, independent variable y star, the

similarity parameter Reynolds number and the pressure gradient present in the system

which is d p star d x star. 

So, my functional form of u star is going to be x star y star Reynolds number based on

the entire length of the plate and d p star d x star. I do not know how u is going to be

connected with x y or Reynolds number, but I  know that a functional  form like this

would exist for the case of flow. Now in terms of engineering interest we would like to

find out what is the shear stress at the surface? That means, at this by at by at the surface,

I mean at y star to be equal to 0 that is at the surface.

So, which I let us call it as tau s, the shear stress which would be mu times del u del y at

y equals to 0. So, this is the shear stress at the surface and if I if I non-dimensionalize it;

it is simply going to be mu u by L del u star by del y star at y star equals to 0. 



So, that would give me the expression for shear stress and shear stress coefficient, we

understand that  by definition  its  tau s  by the dynamic  pressure which  is  half  rho V

square; V is the approach velocity, rho is the density. So, that is a definition of C f. So,

the definition of C f it can be written as Reynolds number for the entire length del u star

by del y star at y star equals to 0. This was simply obtained by putting the value putting

the expression of tau s over here and observing this half rho V square in it to obtain to by

a real del u star by del y del u star by del y star at y star equal to 0. 

So, this if I would write take write to find what is the, what is the del u star functional

form of del u star by del y star at y star equals to 0? So, if you look at the expression the

functional form, the hypothetical functional form of u star, I am trying to find out del u

star del y star at y star equals to 0. Since, I am assigning a specific value of y star to be

equal to 0; this must be a function of x star d p star d x star and Reynolds number based

on length. Since, I have specified the value of y star to be equal to 0. So, therefore, the y

star does not appear over here. 

Now, this is the flow; this is a flat plate over which the flow is taking place and this site

is the turbulent flow. Now, if  the geometry is prescribed, then you would be able to

obtain d p star d x star separately. So, this for a prescribed geometry, I will I will explain

on it in a moment. Remember that what I have told you before is between in inside the

boundary layer, the flow is viscous; outside of the boundary layer, the flow is in viscous.

So, there is no effect of viscosity in here. Since, you have viscosity present in effect of

viscosity present inside the boundary layer, you cannot use known equations which are

available to give which are there to provide what is the pressure drop as a function of

distance. 

Now, when you when if you if you if someone tells you that what is the equation that

provides the pressure drop in a flow? The name that comes to your mind is Bernoulli’s

equation because Bernoulli’s equation would relate the pressure gradient  the pressure

head, the velocity head and the gravity head. Now, if I assume the plate to a horizontal

which is  the case in this  case.  So,  therefore,  the it  is  going to be the summation of

pressure head and velocity  head to  be constant.  So,  if  I  know this velocity  or I  can

express  the  change  in  pressure  in  terms  of  change  in  velocity  head  that  is  what

Bernoulli’s equation is all about. Now, there is catch though; the Bernoulli’s equation is

strictly valid for in viscid flow for flow where the effect of viscosity is absent. 



So, inside the boundary layer, technically I cannot use Bernoulli’s equation as the flow is

viscous there. So, this solution; but the observation is outside of the boundary layer the

flow is  in  viscid.  So,  if  the  geometry  is  known to  me then I  would  be  able  to  use

Bernoulli’s equation in the flow domain outside of the boundary layer  to obtain and

expression for d p d x or d p star d x star independent of everything.

So, if someone gives me the geometric I should be able to obtain, what is d p star d x star

outside  of  the  boundary  layer  through the  use  of  Bernoulli’s equation  and since  the

thickness of the boundary layer is very small, there is no change in pressure with y. That

is an assumption which is, a valid assumption considering the small thickness of the

boundary layer. So, I use Bernoulli’s equation to find out what is d p star d x star. So, d p

star d x star can be obtained and for a prescribed geometry d p star d x star is a constant;

for that reason the from the expression of del u star by del y star at y star equal to 0

which  had otherwise contained  d p star  d  x star, I  can  drop that.  Since for  a  given

geometry this pressure gradient is known to me after every and is a constant.

So, in terms of functional form of the equation whatever I have written over here can

simply be written once again as del u star del y star at y star equal to 0 is a function only

of x star and Reynolds number I need not mention d p star d x star for a prescribed

geometry. 
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So, in other words my del u star by del y star at y star equal to 0 is simply going to be f 2

the function the unknown function x star times Reynolds number x star times Re L. Now,

now if use C f which I have seen to be equals 2 by Re L del u star by del y star at y star

equals  to  0  which  I  have  seen  in  here.  This  is  the,  this  is  where  I  have  obtain  the

expression for C f. So, my C f is simply going to be 2 by Re L f 2 of x star and Re L. 

So, my C f therefore, would be 2 by Re L f 2 the yet to be evaluated functional function

of x star and Re L. So, these are the 2 equations that one needs to take a look at. First of

all u is a function of all the independent variables, the operational parameter and the

pressure  gradient.  From  there  I  obtained  the  shares  stress;  from  the  shear  stress,  I

obtained C f and for del u star by del y star at y star equal to 0, I obtained the functional

form for this special case when the geometry is known to me. So, this should give me the

expression for C f for flow momentum transport inside a boundary layer. Now, let us see

what is going to happen to the temperature profile? So, if I look at the temperature in

expression over here, over here that we have obtained.

(Refer Slide Time: 14:56)

My temperature profile T star would be function of u star x star v star y star Reynolds

number and Prandtl number; but this u star and v star are already a function are already

known function of x star and y star and so on. For example, in this expression itself what

we have seen is that u star is a function of once; you specify x y Reynolds and d p d x, u

star is specified. 



So, in the governing equation here you do not need to write T star is a function of u star

because the moment you write T star is a function of x star y star and Reynolds number,

you essentially specify u star. So, by incorporating u star once again in your a functional

form that would be simply a repetition. 

(Refer Slide Time: 16:16)

So, therefore, based on the knowledge of the of this governing equation, one should be

able to write the functional form T star to be equal to a function f 3 and I put it as x star y

star Reynolds number Prandtl number in d p star d x star. This d p star d x star I am

keeping it just as just as to make it complete.

But we understand that for a prescribed geometry, I can drop this d p star d x star. So, the

same way I have done it for the case of shares stress. I am going to write the same thing

for the case of surface heat flux which I call it as q s. So, this is a solid plate, you have

the profile and have flow taking place; I am trying to find out what is the surface heat

flux at y star equal to 0. So, the surface heat flux is k thermal conductivity of the fluid

times del T by del y at y equals to 0.

So, that is the Fourier law equivalent. That is a Fourier’s law in which can be expressed

as minus k f del T del y at y to be equal to 0 divided by T s minus T infinity and this is

going to be equal to h. Because my q s, this is the equality of conduction and convection

at this point, at the point where the liquid molecules by due to no slip are stuck to the

solid.



So, the heat transfer from the immobile liquid molecules to the mobile liquid molecules,

there you have the conduction and convection equality. So, this q s can be expressed in

terms of Fourier’s law; this q s can also be expressed in terms of Newton’s law which is

h times T s minus T infinity. So, h times T s minus T infinity is also equal to. So, these 2

are simultaneously  valid  at  y equals  to  0 and therefore,  the expression for h  can be

obtained in this fashion. 

So, when you express it in dimensionless form this becomes h is equal to minus k f by L

T infinity minus T s by T s minus T infinity times del T star by del y star at y star equals

to 0. So, this gives I am slowly moving towards the dimensionless form of the expression

over here.

(Refer Slide Time: 19:23)

So, when you do that when you cancel that the numerator and the denominator what you

get is h is equal to k f the thermal conductivity of the solid times del T star by del y star;

y star to be equal to 0 or in other words, you can write h L by k f is equal to del T star by

del y star at y star equals to 0. 

So, what is h L by k this is nothing but the Nusselt number. So, we it in convection, we

always try to find what is h or what is the expression for Nusselt number? So, now, I

write a Nusselt number is used for f 1 f 2 and f 3 over here. So, Nusselt number is del T

star del y star that that y star equal to 0. So, when I say its del T star del y star at y star



equal to 0 that function should be a function of x star Reynolds number and Prandtl

number provided the geometry is known to us.

So thus, this Nusselt number expression would be some function f 4; I do not know what

this f 4 would be? But, some function of x 4 Reynolds number sorry x star Reynolds

number and Prandtl number. So, this is obviously, for a prescribe geometry and if would

like to find out what is the average value of Nusselt number, length average value of

Nusselt number; the moment you do that, the length average value of Nusselt number;

then, x star is obviously drop it should be another function f 5 Re L times P r. 

So, this is the local value of Nusselt number; this is n u x and this is the. So, this is local

value of Nusselt number and this is the average value of Nusselt number and the bar over

Nu simply denotes it is the average value which is the function of this in the f. For length

average value, it would simply be a function of Reynolds number and Prandtl number.

Now when we when we use the Reynolds condition, Reynolds analogy; what is at d p d x

is 0 and Prandtl number is equal to 1 and if that is the case, then the expression of u star

and T star must be identical. This is what we were discussing so far. So, the expressions

of u star and T star must be identical. So, what is expression of T star and u star? So, u

star is f 1 and T star is f 3.So, if your if your Prandtl  number is equal to 1. So, the

equation becomes dynamically similar; d p d x is in is the dependence of d p d x is not

there.

So, therefore, f 1 must a f 1 must be equal to f 1 and f 3; f 1 and f 3 are going to be

identical ok. So, f 1 and f 3 are identical. It is also then true that the expression for the

friction coefficient which is this f 2 must also be equal to the f 4 which is which is the

relation for this case. So, expression for u star and T star must be identical would simply

give you that f 1 is equal to f 3 ok. 

In  true  also  for  friction  coefficient  and Nusselt  number;  so,  if  it  is  true  for  friction

coefficient  Nusselt  number what  you would get  is  f  2  is  equal  to  f  4.  So,  these are

collectively  known as  the  Reynolds  analogy. The  important  point  here  is  the  major

problem that you one would face in the practical application of Reynolds analogy is the

requirement that Prandtl number has to be equal to 1.



Where are you going to get a fluid who is Prandtl number is equal to 1 and if it is equal

to 1, how are you going to use this analogy for other cases? So, f 3 f 2 is equal to f 4;

how does how does that help us? f 4 is this, f 4 and f 2 if these 2 are identical; if f 2 and f

4 are identical, I will write these 2 equations once again to show how we can use them

use them in this case.

(Refer Slide Time: 25:21)

So, C f is 2 by Re L del u star by del y star at y star equal to 0 and we understand that del

u star by del y star at y star to be equal to 0 is equals f 2 x star times Reynolds number

based on length and for the case of Nusselt number, Nusselt number is simply equal to f

4 x star Re L times Prandtl number ok. So, if f 2 and f 4 are equivalent, then what we can

say is that C f, C f from here times Re L by 2. So, C f times Re L by 2 is this which is f 2

must be equal to Nusselt number. So, if f 2 and f 4 are equivalent, then C f times Re L by

2 must be equal to Nusselt number.

So, this is known as Reynolds Analogy. This is a some extremes in some cases, it  is

modified in a exactly different way; where it is written that C f by 2 is equal to Nusselt

by Reynolds number based on the length. And since the value of Prandtl number is equal

to 1, there is no harm in adding a Prandtl number in this case. I can do that since Prandtl

number in Reynolds analogy is equal to 1. So, this Nusselt by Reynolds into Prandtl has

a special name which is called Stanton Number. So, I can use Stanton number the I can

introduce Stanton number. So, this is the value of Prandtl number is equal to 1.



So, the general form of Reynolds analogy is C f by 2 is equal to Stanton number. This is

the commonly used form of Reynolds analogy. So, this connects the key engineering

parameter of C f in fluid friction with h on Nusselt number in convective heat transfer.

So, I would also like to draw your attention to the previous slide that I was showing

Nusselt  number is  equal  to del  T star by del  y  star  at  y  star  equal  to  0.  This again

reinforce reinforces my statement that the significance of Nusselt number is nothing but

the dimensionless temperature gradient at the solid liquid interface. 

So, that would be the definition of Nusselt number. The more important 1 is a Nusselt

number contains h; this is an engineering parameter and here I connect Nusselt number

with C f friction coefficient which also is an engineering parameter. So, through the use

of this analogy, I connect the heat transfer with momentum transfer; but there is as I

understand, there is a problem that is only valid for the case when Prandtl number is

equal to 1. So, therefore, in order to extend the validity of Reynolds analogy 2 situations;

2 fluids whose Prandtl number may not be equal to 1; a correction factor is added to this

analogy and then, it takes the is called the modified Reynolds analogy.

(Refer Slide Time: 30:15)

And  is  also  known  as  the  Chilton  Coulburn  Analogy  to  extend  the,  to  extend  the

Reynolds  analogy. A correction factor  is  added to this  as Stanton into Prandtl  to  the

power 2 by 3. So, this is the correction factor which is added in the Stanton Prandtl to the

power 2 by 3 is Nusselt by Reynolds into Prandtl into Prandtl to the power 2 by 3 and



this extends the Prandtl number to a large range of Prandtl number. So, what you get then

is Nusselt by Reynolds in 2 Prandtl to the power minus 1 by 3 is equal to C f by 2 and

this whole thing Stanton into Prandtl to the power 2 by 3 this is called the Coulburn “j”

factor.

So, this is the expression for modified Chilton modified Reynolds analogy or Chilton

Coulburn analogy and the validity of this is extended in most of the real systems real

fluids, they have Prandtl number in the range; except for heavy oils which has Prandtl

number more than 60 and the other extreme is liquid metals which as Prandtl number

way below 0.6. So, for heavy metals sorry liquid metals and heavy oils, if we exclude

these 2 special type of fluids most of the liquids the most of the fluids that you ordinarily

use, ordinarily come across would be in this range. And therefore, the Chilton Coulburn

analogy extends the extends this for a wide range of Prandtl number.

The advantage, what is the advantage? The advantage is as I mentioned C f expression is

already known to us R e x triple minus 1 minus 1 by 5; put it in here and what you get is

an expression for Nusselt number as 0.029 Reynolds to the power 4 by 5 into Prandtl to

the power 1 by 3. The range of validity between Prandtl number 0.6 and 60. See the

beauty of it. This is something which is really interesting. You have got an expression for

Nusselt number, you have got an expression for h by simply using and analogy which

has solid foundation. So, you the expression for C f is known to you; you are looking at

the governing equations,  non-dimensionalizing the governing equations; the similarity

parameters clearly obtained out of this excises.

You look at the dimensionless boundary conditions; see under which condition these 2

equations governing equations become dynamically similar. The moment they become

dynamic similar, the solution of one can be used as the solution of the other. So, del u

star del y star at y star equal to 0 which is connected with C f can be substituted by del T

star del y star at y star equal to 0 which is connected with Nusselt number.

So, the gradient of velocity or the gradient of temperature, all in dimensionless form; one

related  to  C  f,  the  other  is  related  to  Nusselt  number.  The  momentum  with  them

dynamical  similar,  these  2  gradients  are  identical  and  what  you  have  then  is  an

expression for  C f  and an expression for  Nusselt  number. The expression for C f  is



already known to you. Therefore, you obtain an expression for the Nusselt number in

turbulent flow.

So, without getting into the complicated statistical analysis of AD formation, velocity

distribution, unknown velocity distribution, the fluctuations in temperature in velocity;

you  have  a  tool  now  through  the  use  of  an  analogy  and  an  extended  analogy  by

incorporating Prandtl number corrections, you now have the expression for convective

heat  transfer  coefficient  in  turbulent  flow. That  is  the beauty of  this  analysis  or this

analogy.

So, Reynolds analogy or modified Reynolds analogy which is also known as Chilton

Coulburn analogy is  a powerful tool which lets  you find out the expression for h in

highly turbulent flow. So, now, I have the complete picture in heat transfer; external heat

transfer, flow the heat transfer in external flow simplest possible example flow over a flat

plate. I have an expression for h in the early part where the flow is laminar up to a value

of Reynolds number 5 into 10 to the power 5. And through the use of analogy, I have an

expression for the Nusselt number beyond Reynolds number 5 into 10 to the power 5;

that means, when the flow is turbulent.

So,  together  they  give  me  a  complete  picture  of  what  would  be  the  heat  transfer

coefficient in laminar flow and what would be the heat transfer coefficient in turbulent

flow? More importantly, this I would show you the next class a corollary of that is the

flow is never fully turbulent and the flow can change from laminar to turbulent. So, in

most cases any flow has a turbulent portion to sorry a laminar portion to begin with and

then, it becomes turbulent.

So, those kind of flows are commonly encountered the known as Mixed flow. The early

part its laminar later part it turns turbulent. So, how these relations can be modified to

express the average heat transfer coefficient for the case of mixed flow. But that that is

there is no new concepts and involved there. What is important is again, I would bring

your attention to this equation which simply gives you the Nusselt number for the case of

turbulent flow as a function of Reynolds number and as a function of Prandtl number. 

I  should  mention  as  I  was  telling  you  this  is  when  the  flow  is  turbulent  from the

beginning. So, when the flow is turbulent from the beginning. This expression can be

used to obtain to obtain the value of h and so on. But in most of the cases the flow is



laminar to start with and then it turns turbulent those kind of flows are known as Mixed

flow.

So, I will give you the expressions or mixed flow based on the expression of nusselt,

Nusselt number in laminar flow and in turbulent flow in the next class. But however, I

would once again write the Nusselt number for the case of laminar flow which here just

to compare them is 0.3332 R e to the power half into Prandtl to the power one-third. 

So, this is for laminar flow and this one is for turbulent flow. So, together if you if I

combined this  and this  together  what  I  get  is  mixed flow. But  this  is  obtain  almost

completely analytically, this  has some approximation built  into it;  but it  gives us the

analogy is give us a powerful tool to convert  heat transfer data from the momentum

transfer obtain an expression for heat transfer and vice versa.

So, will solve her quite a few problems on this to clarify the concepts and to show you

how this analogy can be effectively employed in problem solving. 


