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Good morning everyone. So, we will be start as we have seen in the last class that we 

were looking into the modeling of membrane modules. We have looked into the very 

simple version of the module modeling. We concentrate the constant permit flux that is 

coming out from the wall or from the membrane surface. Initially, we have concentrate 

the flow through a rectangular geometry, which will be nothing but simulating the spiral 

wound module and similarly we have looked into the tubular module and although we 

have not derived the detailed equations from the tubular module. But this could have 

been done in the exactly the same way we have done from the overall material balance 

and solute balance and the pressure drop calculations in a rectangular channel. 

So, modeling of membrane module indicates that we have to calculate the axial pressure 

drop that will be developing inside the membrane module. This axial pressure drop 

calculation is very very important in almost in almost all chemical engineering 

applications, whether it will be a (Refer Time: 01:26), whether it will be distillation 

column or it is absorption column, whether it is absorption column. Because once you 

know the pressure drop or flow through a pipe, so you whenever you know that pressure 

drop then you will be able to know the rating of the pump by which the fluid has to be 

transported. So, that the design of the pump or the in case of the in case of the liquid or 

design of the compressor in case of gas flow can be can be calculated easily, if you know 

the pressure drop in across the equipment. 

So, the selection of the equipment now driving agent for example, pump and compressor 

is very, very essential in you to know the knowledge to know the knowledge of the 

pressure drop in the process stream. So, that is why the pressure drop calculations are 

always very important in any chemical engineering applications and so in our application 

as well in the membrane module. 



 

 

So, now, we will be doing step by step we will be adding step by step complication to the 

whole theoretical modeling as we have done earlier, next analysis we will be doing that 

the permeate flux is not constant it will be proportional to the trans membrane pressure 

drop neglecting the osmotic pressure. So, you will be in the next analysis we will be 

doing the I have negligible osmotic pressure case, where permeate flux is proportional to 

the trans membrane pressure drop. In the third analysis and final analysis, we will be 

considering the axis number three where osmotic pressure is not at all negligible and we 

will be doing a real and modeling of the membrane module. 
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So, in these case, case 2 will be considering the permeate flux is proportional to trans 

membrane pressure drop, we have negligible osmotic pressure of the solution. So, first 

we will talk about the spiral wound module. So, as we have done earlier that the 

governing equation of trans membrane pressure drop will be remaining same that we will 

be assuming that the velocity profile remain is undisturbed by small permeation in the 

wall.  

So, the pressure drop profile the governing equation for trans membrane pressure drop or 

axial pressure drop for delta P remains same and this becomes we have seen in the last 

class that d square del P d x square is equal to 3 mu h cube times v w, but in this case v w 



 

 

will be nothing, but L P del p, where L P is the membrane permeability. The boundary 

condition that we have already one was the pressure drop at the inlet at x is equal to 0 

these delta P is known to us. And also the flow rate is known to us at the inlet condition 

and that will be at x equal to 0, d delta P d x is equal to minus three mu divided by two h 

cube w q in. 

So, since both the boundary conditions specify on the same boundary and located at x 

equal to 0 this is a typical quasi boundary condition and we have already seen earlier that 

equalization of these two boundary conditions in the previous class. So, now, this is a 

simple a first standard in second ordinary differential equations two boundary conditions 

are specified. So, this problem can be solved quite easily and I am just writing the 

solution directly computing a couple of steps in between. So, kindly do the derivation by 

yourself. So, delta P x divided by delta P in is equal to cos hyperbolic lambda x minus 3 

by 2 mu q i h cube this q in w lambda delta P in sin hyperbole lambda x, where w is 

nothing but the channel width and the parameter lambda is nothing but root over 3 mu L 

P divide by h cube. So, this is the expression of pressure drop at any a distance x in the 

module or in the channel. 
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Now the pressure axial pressure drop over the full-length module length L becomes delta 



 

 

P i minus. So, it becomes delta P in minus delta P x is equal to delta P i 1 minus cos 

hyperbolic lambda x plus 3 by 2 mu q in divide by h cube w lambda sin hyperbolic 

lambda x and for point x is equal to L that will give you the axial pressure drop in the 

across the channel. So, delta P in minus delta P L is equal to delta P in this will be in 1 

minus cos hyperbolic lambda L plus 3 by 2 mu q in h cube w lambda sin hyperbolic 

lambda l. Now, one can get an expression of fractional recovery of feed a fractional 

recovery of feed over the entire model becomes f is equal to the total flow rate in the 

permeate stream divide by total flow rate going into the system q in, this will be nothing 

but two w v w d x over the entire length L divide by q in. So, this will be nothing but 2 w 

L P 0 to L delta P x d x and divided by q in and we know the profile of delta P x. 

So, this can be inserted here and this can be integrated it out and the final expression 

becomes 2 w L P delta P in divided by lambda q in sin hyperbolic lambda L minus 3 mu 

q in divide by 2 h cube w lambda delta P in cos hyperbolic lambda L minus 1. So, we 

will be getting an expression of fractional feed recovery. So, we can also know we can 

calculate the profile of permeate flux, because v w is equal to nothing but L P del P as a 

function of x. So, we can we can put the expression of delta P x and can get the permeate 

flux as a function of x. 
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If you really do that the expression of permeate flux becomes L P delta P in cos 

hyperbolic lambda x minus 3 mu q in divide by 2 h cube w lambda del P in sin 

hyperbolic lambda x. Now that profile of v can be obtained the profile of cross the 

retuned velocity in the channel that can also be obtained from this expression. So, if you 

remember that the governing equation of q from the elemental mass balance, that we 

have already done in the last case in the previous class. So, elemental mass balance is. 

So, basically mass balance over an element in the in the channel will give you minus d q 

d x is equal to 2 w v w and in this case we have to put q is equal to 2 x h times u, where u 

is the velocity. u is the axial velocity in the channel h is the height and 2 x is the length. 

So, that will be the cross sectional area. So, you are a going to get d q d x. So, now, will 

be getting and v w in this case will be L P del p. So, d u you just substitute it over here. 

So, we will be getting d u d x is equal to minus v w over h and you know the expression 

of v w, v w is nothing but minus L P del P divided by h, but del P will be a function of x. 

We have already calculated how profile of pressure drop varies along the x. So, we will 

be substituting that over here and then we can we can integrate at integrate over u. So, if 

you really do that, so it will be nothing but minus L P by h del P in by h and then we 

integrate over the you put the expression of delta P and integrate over 0 to x and there 

will be from u in to u at in x location will be giving you these expression 3 mu q in 

divided by 2 h cube w lambda delta P in sin hyperbolic lambda x minus cos hyperbolic 

lambda x d x. If we can if you if you really carry out the integration the final expression 

will be nothing but u x divided by u in will be equal to 1 minus L P delta P in divided by 

h lambda u in sin hyperbolic lambda x minus 3 mu q in divided by 2 h cube w lambda 

delta P in cos h hyperbolic lambda x minus 1. 

So, this will be complicated equation and if you really evaluate this will be a positive 

quantity. So, a 1 minus some positive terms, so it will be decreasing. So, as you go along 

the length the velocity of the in the feed channel will decrease. Why the velocity will 

there in the feed channel will decrease; simply, because we are extracting some amount 

of material or the in the in the boundary of both the walls. So, its velocity has to go down 

and this is the expression of velocity in the flow channel as a function of (Refer Time: 

14:26) module length. 
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Then we can really calculate the concentration in the channel as well. So, assuming a 

completely retentive membrane, that means permeate concentration is 0. So, will be 

having d of d d x of u C times 2 w h will be equal to 0. So, d is basically the solute mass 

balance over the differential length of the channel. So, therefore, u at inlet C at inlet 

should be is equal to u at any x location C at any x location. So, therefore, one can get an 

expression of C at x, C in is equal to u in divide by u x and it will be inverse of that. So, 

will be getting the profile of that 1 minus L P del P in divided by h lambda u i sin 

hyperbolic lambda x minus 3 nu q in divided by 2 h cube w lambda delta P in cos 

hyperbolic lambda x minus 1. So, therefore, the concentration in the feed channel will be 

increasing as a function of x, because the denominator will be decreasing as the as the 

length of the channel. 

So, inverse of that, so therefore, the concentration will be increasing in the feed channel 

and at the outlet. If the concentration can be obtain by putting x is equal to l, we can get 

concentration at the outlet of the module. We have already got the expression of pressure 

drop and from that we can get the rating of the pump through whatever is required what 

is or kilo whatever pump is required to pump the fluid to overcome this pressure drop in 

the module. So, that gives the rough idea about the design of the module whenever we 

are talking about a rectangular channel, where in the permeate flux is proportional to the 



 

 

trans membrane pressure drop.  

So, next will be carrying out an analysis for we will be pulling out the results in the 

tubular module we will do the exactly the same thing and the finally, we will be I will be 

writing that the governing equations and the final solution of the tubular module. So, you 

just do the exact the derivations following the all the in the steps exactly the same way in 

the rectangular channel it will be getting the results in the tubular module. 
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So, in case of tubular module the velocity is given as R square the across section average 

velocity is given as u is equal to R square by 8 mu minus d delta P d x and we will be 

getting the governing equation of d delta P d x is equal to 8 mu by R square times u. If 

you do a differential mass balance, mass balance over a differential element will give us 

d u d x is equal to minus 2 v w by R you can put minus 2 L P del P divided by r. 

Similarly, one will be getting an expression of you just you can differentiate it once again 

and get d u d x. Substitute it over here combining these two equations one will be getting 

the governing equation of d square delta P d x square is equal to 16 mu L P over R cube 

times delta p.  

The solution of this equation will be straight forward and the solution will be delta P i 



 

 

cos hyperbolic m x minus beta sin hyperbolic m x and m becomes a parameter, which is 

nothing but sixteen mu L P over R cube R is the radius of the tube and beta is the 

parameter 8 mu u in divided by m R square. So, one can calculate the axial pressure drop 

as a function of channel length a tube length.  

(Refer Slide Time: 19:36) 

 

The axial pressure drop becomes at any point any location x delta P in minus delta P x is 

equal to delta P in 1 minus cos hyperbolic mx plus beta sin hyperbolic mx. One can get 

the axial pressure drop across the module can be obtained by putting x is equal to L in 

the above expression. Similarly, the other parameters can be calculated u over u i u in is 

equal to 1 minus 2 L P divided by m into R delta P in sin hyperbolic m x plus beta 1 

minus cos hyperbolic m x. You can get an expression of feed concentration retuned 

concentrations is a function of C in is equal to u in by u x it will be just you know reverse 

of this expression.  

So, this will be u in and the denominator will be putting up this expression over here and 

one can get so. The axial pressure drop where one will be getting the idea is that the axial 

pressure drop will be varying as a function of x and whenever will be calculating the 

permeate flux v w L P delta P minus delta pi. So, delta P is no longer a constant at every 

x location the delta P will be varying as a function of x and that will be taken care of. 



 

 

One will be taking the axial pressure drop across the module the permeate flux profile, 

across the module the velocity profile, across the module the concentration profile in the 

retuned stream. So, once that is done now let us look into a more and the most realistic 

case of the module when we are not neglecting the osmotic pressure difference. 

(Refer Slide Time: 21:52) 

 

So, we will be looking for case number 3 now while we are talking about a Newtonian, 

fluid Newtonian, steady state, laminar and spiral wound module. So, the governing 

equation of trans membrane pressure drop remains the same. So, it becomes d delta P d x 

is equal to minus 3 mu q divided by 2 h cube w and by putting q is equal to 2 w h u this 

can be expressed in terms of velocity. So, d delta P dx becomes now minus 3 mu u 

divided by h square.  

The permeate flux u w is now no longer proportional to delta p, now you have L del P 

minus del pi and what is in terms of when you express phi is equal to B 1 C plus B 2 C 

square plus B 3 C cube and we replace. So, delta pi is nothing, but pi m minus pi P. So, 

pi evaluated and membrane surface concentrations C m and phi P is phi evaluated and 

membrane at permeate concentration C P. So, then we will replace R r in we will be 

replacing C P in terms of R r and C m. So, by defining R r is equal to 1 minus C P by C 

m and we will be getting an expression of v w in terms of C m only L P del P minus B 1 



 

 

C m R r plus minus B 3 C m square 1 minus 1 minus R r square minus B 3 C m cube 1 

minus 1 minus R r cube. So, this is the expression of permeate flux now if there. 
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Now we will do a solute mass balance in the differential area if we do that will and if you 

doing overall material balance then we will be doing a solute material solute balance. So, 

doing an overall material balance in the channel in the elemental area exactly like the 

previous case we will be getting d u d x is equal to minus v w by h. So, this will be the 

governing equation of u in the channel and v w is nothing, but L P del P minus del pi. So, 

what is the then you do a solute mass balance in elemental area, in this case, these 

becomes d u C, d x becomes minus v w C P divided by h is the upper w channel C P is 

the concentrated permeate concentration and you just open it up the left hand side it 

becomes u d C d x plus C d u d x is equal to minus v w C P over h.  

Then we can replace d u d x from this equation where and ultimately you will be getting 

the governing equation of d C d C u governing equation of concentration. So, these 

become v w by h C minus C p. So, this will be by the governing equation of they will be 

governing equation of trans membrane pressure drop or axial pressure drop this will be 

the governing equation for permeate flux, these will be the governing equation for 

velocity, these will be the governing equation for concentration in the feed channel. 



 

 

So, I will be having three ordinary differential equations for the accounting trans 

membrane pressure drop velocity cos velocity in the retuned channel as well as the 

concentration in the retuned channel. So, three ordinary differential equations for delta P 

u and C in channel or module and they will be having the conditions we know the 

boundary conditions on delta P at x is equal to 0. So, at x equal to 0 we have 2 boundary 

conditions on delta P delta P is equal to delta P in and another one what that related that q 

in d delta P d x that will be known to us at x equal to zero, u is equal to u in and at x 

equal to 0, C is equal to C in. So, these will be coupled, but C n is still not known. 
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So, for that what we are going to do next is we do we relate the bulk concentration with 

the membrane surface concentration. So, we have to relate C m to c. So, this is bulk 

concentration this is the membrane surface concentration and C is the bulk concentration, 

how these are related these are related through the mass transfer coefficient. So, for every 

x in the module for every x location in the module are we have this relation holds good K 

C m minus C is equal to minus d del C del y at y equal to 0. So, this is the definition of 

mass transfer coefficient that is that is valid at every location and at steady state we have 

seen earlier also sum of all fluxes towards membrane equal to 0. So, if we do that this 

becomes v w C m minus C P is equal to minus d del C del y at y equal to 0.  



 

 

Therefore, we can equate this two and we will be getting K C m minus C is equal to v w 

C m minus C P this can be replaced v w C m minus C P can be replaced in terms of real 

retention this becomes v w C m R r. Now, we will be getting these algebraic equations to 

be solving at every step. So, then we will be what we will be doing we will be putting the 

expression of permeate flux here as L P to delta P minus delta pi and we will be 

expressing delta pi in terms of C n and let us see what we get.  
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So, by doing that one will get K C m minus C v C m R r and v w will be L P del P minus 

delta pi K C m minus C is equal to C m R r L P and this will be delta P minus A 1 C m 

plus A 2 C m square plus A 3 C m cube or K C m minus C divided by C m R r L P is 

equal to delta P minus A 1 C m plus A 2 C m square plus A 3 C m cube and the 

Constance a one or related to original osmotic coefficient and real intention. So, A 2 is 

equal to B 2 1 minus 1 minus R r square of that then A 3 is equal to B 3 1 minus 1 minus 

R r cube of that. So, now, we have to find out what is the expression of these algebraic 

expression has to be solved also K is the function of x as we have seen earlier that K of x 

is equal to 1 over I u d square by h x to the power 1 upon 3. If you remember the mass 

transfer coefficient analysis for the flow through a rectangular channel, what I will be 

doing now I will be stopping here in this class.  



 

 

In the next class I will be looking of mass transfer coefficient of function of x and 

writing the complete solution complete expression of the algebraic equation that will be 

that has been solved at every step of three governing equations of delta P u and C. Then 

we will be seeing how the module design can be done in a very complicated and realistic 

case. 

Thank you very much. 


