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So, welcome back to this session of the class. So, we will be basically now looking into 

the solution of cross flow filtration system, these are only valid for reverse osmosis ultra 

filtration as well as the micro filtration. We are looking in today two-dimensional mass 

transfer boundary line analysis. And in the last class, we have seen how the concentration 

profile in the mass transfer boundary line will be solved and then these concentration 

will be evaluated at y equal to 0, you have to get an idea of c m where is the membrane 

surface concentration and how it varies with the hydrodynamic of the system. And then 

once we get that then we will be looking at up with the transport loss to the lost 

membrane. 
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Let us look into that if you look into the solvent flux in the membrane. In membrane, we 

get v w is equal to L p del p minus del pi and we make it one-dimensional by defining v 

w de, we multiplied both side by d by d so it will be L p d by d delta p minus delta pi. So, 

therefore, these will be nothing but one-dimensional permeate flux P e w is equal to let 

us say this parameter is b these in so we write everything in the form of one-dimensional 



 

 

parameter. So, p w is v w d by d is one-dimensional, it is a (Refer Time: 01:56) number it 

is basically one-dimensional permeate flux and b is a one-dimensional parameter L p d 

by D. So, these equations must be valid at every location of module or channel. So, this 

will be the equation that will be satisfied everywhere. 

Now, let us look into the other equations so if you remember that what is the equivalent 

diameter we have we have defined earlier that equivalent diameter is nothing but four of 

aside for a thin rectangular channel. Now, if you remember that we have defined v w as v 

w h x divided by u 0 D square to the power 1 upon 3 is equal to A. And let us write it 

take it on the other side a u 0 D square divided by h x to the power 1 upon 3. Make it 

one-dimensional, so this becomes P e w is v w d e by D, so A u 0 D square d e cube and 

h x D cube to the power 1 upon 3. And we will just put h is equal to d e by 4, so this 

becomes four to the power 1 upon 3 A u 0 this D will be cancelling out d e square 

divided by x D to the power 1 upon 3 . So, now, if you convert this into Reynolds and 

Schmidt number, this will turn out to be this will be raise to the power x to the power 1 

upon 3 on the other side, x to the power minus 1 upon 3. 
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So, now, let us put it in a one dimensional form, so P e w will be to the power 1 upon 3 A 

u 0 d e square by x D. In this we it is x is already included so you can take x out of this 

so it becomes if we make it make x one-dimensional then this becomes this x will be 

outside. So, x to the power minus 1 upon 3, so 4 to the power 1 upon 3 A u 0 d e square 



 

 

by S times L or L is the channel length this becomes x to the power x star minus 1 upon 3 

there will be a square. Now, what is this number d is again a one-dimensional number 

this Reynolds-Schmidt d e by L. If you can open it up u 0 d e by nu, nu is the nu by rho 

so this nu by d this is d by l this becomes u 0 d e square by D L. So, this becomes P e w 

is now becomes four to the power 1 upon 3 A Reynolds-Schmidt d e by L to the power 1 

upon 3, x to the power minus 1 upon 3. 

So, this will be the relationship, how permeate flux is varying as a function of x and one 

can get an expression of a now as P e w divided by four to the power 1 upon 3 Reynolds-

Schmidt d e by L to the power 1 upon 3 x to the power 1 upon 3. So, now, let us write 

down what are the different equations we are having different equations we are having is 

they will be expression of P e w will be osmotic pressure model b times one minus delta 

pi by delta p. And you will be having the expression of i and C M star will be one over 

one minus A R r I and what is the expression of I, I is 0 to infinity exponential minus eta 

cube by 3 minus a eta d eta. Now, let us write down the different equations number 1. 

This will be then 2, this will be 3, and this will be 3 and this will be 4. 
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So, let us write down the so these four equation. Now let us see how we do the 

computation of the system performance and predict the system performance. Now, next 

step is we will be doing a you know numerical calculation. So, at a particular x location 

at a particular x star we guess a value of C m star guess CM star; once CM star is 



 

 

obtained then is guessed then from equation one evaluate P e w from equation number 

one this is the osmotic pressure relationship. Once P e w is known then one can get the 

value of A evaluate A using the P e w at that particular x location from equation 5. 

So, what is our equation 5? In the previous slide, we write this is the equation 5. So, once 

we get the value of A, we will evaluate a from so 5 is not required this is obtained from 

there only. So, you will be getting the value of a from equation 2, so because we have 

obtained the value of P e w from the osmotic pressure of model. We insert that here 

Reynolds-Schmidt d e by L at the operating conditions d e by L is geometric factor, 4 is a 

numerical value, x star we are evaluating at the particular x-location. 

So, therefore, we will be evaluating A from equation number 2. And once you evaluate a 

then we are in a position to evaluate the definite integral I from equation 3. So, once we 

evaluate the definite integral I from equation 3, then from we can we can evaluate you 

can be recalculate calculate C m star from equation 4. So let us look into let us go back 

to the equations at a at a particular x location we have guessed the value of C m star. 

Once you guess the value of C m star, we can evaluate P e w because delta pi will be 

function of C m star only all the other parameters are known to us. So once P e w is 

evaluated, we can get back to equation 2 and evaluate the value of A; once we evaluate 

the value of C, we will be getting back to equation three and we will be evaluating the 

value of I. And this integration has to be evaluated numerically using a trapezoidal rule 

or a Simpson’s rule. 

So, this infinity will be replaced by a higher value let say 5 or 10, so let say put a value 

of 10 and evaluate the value of integral then we will be putting another value of 15 or 20 

and we will be evaluating the value of I numerically using trapezoidal, Simpson. If the 

answer of the two values will be different will be different in the decimal places let say 

one or two decimal places then we can take the infinity as the value of 10. So, once we 

evaluate the value of i we have already evaluate the value of A then you can calculate C 

m star from equation four and then we will check whether this C m star is coming close 

to the guessed value or not. 

So, six is check absolute of C m star calculated from step five minus C m star guess is 

less than epsilon. This epsilon can be a small number. If it is not then we have to guess 

the value of Cm. So, if not then we have to guess another value of C m and carry out this 



 

 

loop. If yes then we have to again go to x star plus delta x star. The next x location and 

redo this calculations iteratively.  

So, in the process, what we will be getting, so there will be two loops one will be the 

inner loop where we will be calculating the C m star from the algorithm at a particular x 

location then we will be going to the next x location x plus delta x and redo the 

calculation iteratively. And likewise ultimately what you will be getting ultimately you 

will be getting C m star as a function of x star. So, once you know the C m star as a 

function of x star then you will be getting the P e w as a function of x star and C p star as 

a function of x star. 
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So, we will be getting the profile of permeate flux non dimensional permeate flux as a 

function of x star and permeate concentration as a function of x star. And then these will 

be again left to do a Simpsons rule and doing a length averaging, so average length 

average permeate flux will be nothing, but 0 to 1 P e w x star dx star, and C p length 

average permeate concentration will be 0 to 1 C p x star dx star. So, therefore, one will 

be getting the when the length of which permeate flux and permeate concentration and 

get you can get the system performance as a function of operating conditions so this way 

the osmotic pressure control can be can be predicted to a to a completely a can be can be 

utilized completely predictive way. 

So, for a well defined system when where we know the solute diffusivity solute the 



 

 

geometry of the system perfectly everything is known then this osmotic pressure control 

filtration model can be utilized to get a system performance. Now, let us go a little bit 

ahead. And let us look into the mass transfer coefficient and then we will see how this 

mass transfer coefficient will be estimation of mass transfer coefficient will be helping us 

in reducing the rigor of calculation further. 

So, let us look into the length average permeate flux, and evaluation of mass transfer 

coefficient. So, length average permeate flux will be given as we have described here 0 

to 1 P e w x star dx star. So, we have the expression of P e w as the function of x star. we 

insert there that and see how much we are getting 4 to the power 1 upon 3 A Reynolds-

Schmidt d e by L to the power 1 upon 3 0 to 1 x star to the power minus 1 upon 3 dx star. 

And ultimately, we will be getting as P e w bar is equal to 2.38 A Reynolds-Schmidt d e 

by l to the power upon 3. So, we will be getting the expression of A as a function of 

length average permeate flux as A is equal to 0.42 Reynolds-Schmidt d e by L to the 

power 1 upon 3. So, we call this as lambda 0.42 lambda where lambda is equal to P e w 

bar divided by Reynolds-Schmidt d e by L to the power 1 upon 3. This lambda is also 

known as the suction parameter. 

It is a non-dimensional suction parameter. It indicates that that wall is really porous. And 

if the wall is impervious P e w equal to 0 and 1 will the suction parameter will be zero. 

So, therefore, for an impervious conduit when there is no wall porosity P e w that will be 

indicated by P e w equal to 0. On the other hand, if we have wall suction, there will be 

definite values of P e w bar the length average permeate flux, and there will be definite 

value of lambda not equal to 0. So, in case of no suction, there is no membrane place is 

placed in the conduit in the flow conduit lambda will be equal to 0 in presence of 

membrane lambda will be assuming a finite value. 
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So, next we will be looking into the expression of mass transfer coefficient. So, if we go 

back to the expression of the indefinite integral 0 to infinity, the definite integral infinite 

integral 0 to infinity as exponential minus eta cube by 3 minus A eta. So, I am replacing 

A by 0.42 lambda eta d eta. And now we define the mass transfer coefficient as k C m by 

C naught is equal to minus D del c del y at y equal to 0 that will be a typical definition of 

fluid mass transfer coefficient and k comes. So we make it one-dimensional k C m star 

minus 1 is equal to minus d we replace del c del y in terms of one-dimensional in terms 

of similarity parameter eta. So, this becomes u 0 h x D to the power 1 upon 3 d c star d 

eta evaluated at eta equal to 0. 

Now, if you really do that and we have already seen that C m star is equal to nothing but 

the parameter K 2 and this. This is the d eta at eta equal to 0 will be the integral constant 

k 1. So, mass transfer coefficient can be replaced as minus K 1 divided by K 2 minus 1 u 

0 d square divided by h x to the power 1 upon 3 and k, as if you will be if you replace the 

value of k 1 and k 2. This becomes 1 over I u 0 d square h x divided raise to the power 1 

upon 3. Now, we will be defining the Sherwood number in terms of K d e by D, and this 

becomes the Sherwood number becomes 1 over I u 0 d square over h x to the power 1 

upon 3. 
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And if we now replace everything in the non-dimensional form in the non-dimensional 

form this becomes Sherwood as a function of x star is 4 to the power 1 upon 3 I 

Reynolds-Schmidt d e by L to the power 1 upon 3 x to the power minus 1 upon 3. So, 

this factor 4 comes from conversion of (Refer Time: 20:01) into the equivalent diameter 

and L comes from one-dimensional version of x star x star is defined as x by L. So, we 

can get the length average Sherwood number, length average Sherwood number will be 

nothing, but 0 to 1 S h x star d star and these becomes 2.381 divided by I Reynolds-

Schmidt d e by L to the power 1 upon 3. So, this is the expression of Sherwood number 

length average Sherwood number in the case of membrane channel where the walls are 

really porous. 

Now, let us look into the various you simplified cases. For case 1, P e w equal to 0, then 

P e w bar equal to 0 that means, there is no suction and impervious conduit. Now, if we 

can really find out the expression of I, now this will become zero to infinity exponential 

minus eta cube by 3 d eta this becomes 1.29, and if you really put it there then average 

Sherwood number becomes 1.85 Reynolds-Schmidt d e by l to the power 1 upon 3. Now, 

if you can you know recognize this equation; this is nothing but the Leveque’s equation 

so for that is coming from the heat and mass transfer analogy for the impervious conduit. 

So, we get back to the Leveque’s equation, if we put wall suction is equal to 0 or the 

suction parameter lambda is equal to 0, when there will be no permeate flux coming out 



 

 

of the system. So, next case - case 2, when wall suction is not equal to 0 P e w bar is not 

equal to 0 then that means, that you will be having a membrane channel an into the 

system. So, what we will be doing, if you look into the value of lambda, lambda is 

nothing but P e w bar divided by Reynolds-Schmidt d e by L to the power 1 upon 3. For 

a typical value of lambda in membrane, system for microfiltration system P e w bar will 

be will be quite high. So, in that case we will be having a high value of lambda. In case 

of reverse osmosis, P e w bar will be quite less, so we will get less value of lambda and 

typically this lambda rise from 0.5 to 10. 
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Next, what we will be doing, we will be evaluating the integral I as a function of lambda 

numerically, and then we fit a curve of 1 over I as a function of lambda. If we really do 

that then we will be getting Sherwood length average Sherwood is equal to one point 

eight five Reynolds-Schmidt d e by L to the power 1 upon 3 1 plus 0.32 lambda plus 0.02 

lambda square minus 8 into 10 to the power minus 4 lambda cube. Now, this will be the 

expression of Sherwood number in a membrane channel when the walls are really porous 

and now this these expression if we put the no suction case no suction means when 

lambda equal to zero when lambda equal to zero we will be getting down getting back 

the Leveque’s equation. So, this is the expression of Sherwood number by incorporating 

the value of we know we know suction parameter in the membrane wall. 

So if you remember the Leveque’s solution that was developed in 1885 and the 



 

 

modification of the porous wall the Sherwood number will be is has been developed 

recently in 1997, in late 90s. So, it will be what it indicates that the suction parameter 

increases the mass transfer coefficient of Sherwood number. And what is the extent of 

increase the extent of increase will be given by these factors and depending on the value 

of lambda, the porosity of the wall or permeability of the wall. The suction parameter 

will be enhanced the Sherwood number compared to the no-impervious conduit or the 

when the suction parameter will be equal to 0. 

Now, next we will be seeing how to utilize the Sherwood number relationship in order to 

find a quick calculation of the system performance quite easily. So, we will be looking 

into the faster procedure or algorithm to calculate system performance using Sherwood 

number or average mass transfer coefficient. So, if you look into the boundary conditions 

at y equal to 0 at y equal to 0, we had v w C m minus C p is equal to minus d del c del y 

and at the same point we have the definition of mass transfer coefficient as k times C m 

minus C 0. So, if we consider the all average values length average length average values 

will be having that v w bar c m bar minus C p bar is equal to k l bar c m bar minus c 

naught. And in terms of non-dimensional parameter you will be getting P e w bar is equal 

to s h l bar R R 1 minus 1 over C m star. So, P e w bar is equal to nothing but v w bar d e 

by d and Sherwood is nothing but k l bar d e by d. 
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So, this relation will be giving you the expression of average value of wall suction 



 

 

parameter or the permeate flux with respect to with respect to length average permeate 

flux. So, you will be having the length average permeate flux this is expression P e w bar 

is equal to bar divided by R r 1 minus 1 by C m star and we have the osmotic pressure 

model P e w bar is equal to b times one minus delta pi by delta p.  

Now, we have the expression of s h l bar average Sherwood length average Sherwood 

number as a function of lambda which will be nothing but p w bar divided by Reynolds-

Schmidt d e by l d e by l raise to the power 1 upon 3. And we have delta; delta pi which 

will be function of C m star now we have two so essentially we will be having two 

equations and two unknown systems, what are the unknowns P e w bar and C m star. So, 

now you have to solve two algebraic equations, which are non-linear; and they are 

coupled again this can be solved by using Newton-Raphson method iteratively. 

Therefore, now using the mass transfer, what we have seen what we have seen now in 

these class, we have seen how to solve a two detailed two-dimensional model for 

osmotic pressure control filtration. And once you get the concentration profile then if you 

hook it up with the transport phenomenon through what as you know membrane then 

you will be getting a system performance. If you adapt to an algorithm which will be 

giving you ultimately the value of permeate flux and permeate concentration as a 

function of x, but if you remember up to that point we have not used the definition of 

mass transfer coefficient. 

Next, what we have done we have derived a fundamental relation of length average 

Sherwood number or mass transfer coefficient from the first principle and obtain an 

expression of Sherwood number. Now, using the definition of mass transfer coefficient 

we have formulated the problem once again but at this time it will be in the terms of lay 

all length average quantities. So, therefore, we will get ultimately landing up with two 

algebraic equations. 

Now, in this case, we are not going to evaluate the profile of dependant parameter 

permeate flux and permeate concentration as a function of x location and then doing one 

more length averaging by adopting Simpsons will not trouble your trapezoidal rule. In 

this case, we have landed up into two algebraic equations directly having two unknowns 

and one can get the length averaged permeate flux and permeate concentration directly 

from this equation using the Sherwood number relationship, so that is why people use to 



 

 

find out the mass transfer coefficient in any transport problem. And then, that will 

immensely simplify the solution of the problem in terms of the mass transfer coefficient, 

so that will complete the predictive mode of how to predict the osmotic pressure 

filtration. 

And osmotic pressure filtration, if you remember will you will come across with the in 

case of the solutes which will be having a low molecular weight. For example, salt, 

sugar, polyphenols, dyes etcetera where so we have seen how to in a cross flow system 

which will be quite frequently applicable for an industrial scale to model the system in an 

entirely predictive method. In the next class what we will be doing, we will looking into 

the importance of the back-shell and how to un-start back shell and how to model the un 

start back shell quite accurately in a predictive manner using the similarity transform 

from the first principles. 

Thank you very much. 


