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We are going to be looking at gas solid reactions effective equilibria. Now just to give you a 

background on this whole effect of equilubria, let us just look at what we have learnt in our 

school on the blast furnace. 
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Blast furnace technology is rather new perhaps last fifty sixty years but still making has been 

known for a very long time. For example, I mean if you look at the history of India for example, 

there is lot of reports that is available around the world when it says that India was the largest 

exporter of steel. Now why is it that that you know this people is been able to make so much of 

steel is because raw materials are available and so on. Now to be able to get good quality steel, 

we just look at some other reaction that is taking place here. We have iron oxide in the form of 

iron ore, it is coming in. 



You have charcoal is the reducing agent and some flux has to take care of some other reactions 

and then as this material keeps moving down and more and more reactions take place and then 

the reaction; for example, iron oxide reacts with carbon monoxide to give you ferric oxide and 

then carbon dioxide as goes down and found, you find finally this iron oxide reacts with co and 

finally give you iron and then carbon dioxide, and finally, molten metal’s comes out. But the 

traditional process of steel making in India was very, very different. For example, what is seeing 

around the world today is that you get a hot metal and because the hot metal, I am just protected 

by slack certain amount of dissolution of this material also take place in the hot metal and will 

create certain problems in the point of view using this iron. 

But the traditional process that was happening in India was that this ion Fe was actually 

harvested as a solid and not as a liquid. This is what was unique about the Indian process. I mean 

in very old perhaps going on for last thousand years and even more interesting perhaps, some of 

you may not know is that beginning may be fourth or fifth century AD to as late as fifteen 

hundreds. All the wars particularly in Europe and west Asia were fought with what is called as 

the Damascus sword and the steel that was used for this Damascus sword world was actually 

made in some places around Andhra Pradesh and from where it is exported for a very very long 

time. 

On other words, this technology of steel making that is traditional to India is interesting is that 

they were making solid ion rather than liquid ion. So, on other words, what we are trying to say 

is that if you know how to handle the equilibria, then we can drive the reaction in the appropriate 

direction. It is something that we all know and something that our you know people I mean 

created this process have understood this, and we want to quantitate this by looking at some 

more example; let me just quickly put down the next example which is also very familiar to you 

which is calcium carbonate decomposition. 
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CaCo3 giving you CO 2 plus Cao; I call this as A; i call this as B; I call this as C, okay. Let me 

write down the k p for the reaction at different temperatures. Kp is in MMHg, T is in Kelvin 

0.073 1.84 22.0 167 1793 2942, 773 873 973 1073 1173 1273, okay. Let me write down the rate 

of formation as k 2 times cc minus k 2 dash cb times cc minus k 1 dash ca. So, this r a refers to 

the formation of calcium carbonate, so that k 2 dash cc cb minus of k 1 dash ca, okay. Now since 

this is a solid, this is a solid and we take solid as a unit activity, of course, in actual practice c is 

solid and b is gas, sorry okay. Now if you take solid us unit activity we can simplify this.  
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Let me just quickly write that down. So, with solid as unit activity of r A becomes k 2 cc minus 

of k 1 or I will put this is as k 2 times cc minus of k 1 divided by k 2, okay. Let me simplify it 

further which is k 2 times cc minus of k c and I will write it as k 2 by RT pc minus of kp, okay. 

So, the rate at which the decomposition reaction CaCO3 equal to co2 plus cao takes place really 

depends; therefore, the decomposition reaction takes place? When the formation takes place 

when pc is greater than kp; therefore, the decomposition takes place when kp is greater than pc, 

is it clear. So, the most important thing is that when pc what do we conclude from here? Ra 

refers to rate of formation of calcium carbonate. 

So, when would calcium carbonate formation take place? When pc is greater than kp. When 

would the reverse reaction takes place? So, we say minus of r a equal to k 2 by r t k p minus of 

pc, okay, is it all right. So, the decomposition reactions take place when the choice of k p is such 

that this term is positive, is this point clear to all of you? So let us look at this one again. So, if 

you look at the k p values for decomposition, we find that around 1073 k, k p value is about 167, 

correct. Now the partial pressures of carbon dioxide in combustion gas are something like nine 

percent, ten percent. So, it is about sixty 65 to 70 mm is what we expect in the combustion gases. 

Therefore, if reaction has to take place at all, then the temperature at which we must perform this 

must be greater than about 65 mm which means you must choose temperatures around 1073 at 

least to give us the driving force for the decomposition. 



So, this is why you will find in all the lime kills around the world; the temperatures are well 

about 1073 well above, okay. Now if you look at this planet earth, all of you know that carbon 

dioxide in this planet is primarily present in rock; that means all the carbon dioxide is present in 

the form of calcium carbonate rocks. If you go to the martial atmosphere, carbon dioxide is in the 

atmosphere; that is how its whole thing is organized. That means depending upon this k p values, 

you will find the carbon dioxide exist in appropriate forms in different planets in the world of the 

universe.  
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Effect of changing gas composition; now the context to this, let me put it down once again. The 

context to this is as follows.  
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Let us say you are conducting a reaction like a zinc sulfide; zinc blend is the very important ore. 

In this country, it is available in Udaipur area Hindustan zinc which is used to be now it is owned 

by Vedanta group. So, they oxidize zinc sulfide with oxygen make zinc oxide. So, you get sulfur 

dioxide. So, what is it that they do? They have a fluidize bed in which they contact the zinc 

sulfide is fed like this and here it is coming like this; it gets oxidize and so on. So, what is 

important here is that the effect of the composition which means effect of what is the oxygen 

concentration that is in contact with zinc sulfide is important for the rate of chemical reaction. 

We must be able to understand this, so that we want to put those numbers in the appropriate 

perspective. So, let us say the reaction is a gas plus bb solid giving you c gas plus d solid, okay. 

Let us assume that it is in contact; for the moment we have gas and you have solid. That means 

gas and solid for the moment, it is in concurrent flow; of course, we can look at where are other 

features later on concurrent flow, alright. So, our stoichiometry if you put down the 

stoichiometry f a f b f c and f d are usual nomenclature nothing new here 1 minus of x a f b 0 f a 

0 times x a f c 0 plus f a 0 x a f d 0 plus f a 0 x a, okay. 

So, this is our stoichiometry and we notice that if you want c a it is simply f a bv v, okay. So, this 

is f a 0 in our nomenclature divided by v. We take v as v naught taking the Gauss law into 



account v naught v naught it becomes t by t naught, correct, alright. This is the effect of the 

temperature on gas flow and so on, okay. Similarly, we can do for others.  
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Let us do for others c a and c c; c c equal to f c 0 plus f a 0 x a times t naught divided by v naught 

times t. So, c c becomes c c 0 plus c a 0 x a times t naught by t, okay. Now we just want to see 

how the equilibria affect the process. So, we recognize that k p for this reaction; for this reaction 

let us look at it once again. For this reaction, k p is p c by p a; that is what I have written here p c 

by p a, okay. So, k p is this. Now this is written as this form c c 0 plus c a 0 x a divided by p a 

which is c a zero times 1 minus of x a. So, at equilibria I am putting a star to denote its equilibria; 

accordingly, we get k p now depends on c c 0 plus c a zero times x a divided by c a 0 times 1 

minus of x a; it is at equilibria. 

So, this gives us x a star; this value is simple arithmetic so divided by 1 plus k p, okay, where 

theta c is simply f c 0 divided by f a 0. Now what we trying to say here is that the value of x a 

star at the solid surface depends on the choice of theta c. On other words if the product what is 

our product. Please recognize here our product is c; if product is present in the feat, it has a bad 

effect on the process because it affects the extent to which we can drive the reaction at equilibria. 

So, this is one important message that we all know from a basic thermodynamic that is stating 

the whole thing once again, okay. 
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Now let us look at the chemical reaction. A gas plus b be solid equal to c gas plus d solid; this is 

the reaction we are considering. So, the rate at which reaction occurs, we want to do it in this 

cocurrent flow in a rotary kill; for example, it is r a dash times a s, okay. What is r a dash? R a 

dash is the rate of chemical reaction per unit surface area and a s is the surface area per unit 

volume. So, that is how and if r a dash is due to a film diffusion control of which we have talked 

about earlier. So, it is taking a form of this nature; therefore, you will get r a dash equal to minus 

of k g; I forgot a minus sign here, yeah, k g times c a 0 times 1 minus of x a minus of c a naught 

times of 1 minus x a star. 

So, this is the rate at which reaction occurs and I have to multiply it by, okay; this is r a, okay. 

Therefore, d f a which is the rate at which chemical reaction takes please in our equipment is 

now kg c a naught within brackets of x a star minus of x a multiplied by the surfaces area per 

unit volume, okay. Now this x a star we have already said let me put this in this form d x a by d v 

with a minus sign equal to with a minus sign kg c a 0 time x a star minus of x a times a s, okay. 

Now what do we say is that this x a star, we have already shown little earlier if we recall here; 

the x a star we have already shown is given by k p minus of theta c by 1 plus k p. 



Therefore, we are now in a position to tell what will be the rate at which our chemical reaction 

with occur in the rotary kill in the concurrent flow of gas and solid, okay. Now also recognize 

that this x a star depends upon the choice of temperature; it depends on the choice of the 

conditions under which you will run the process. If there is product in the feet to that extent, you 

lose reaction rate, okay. So, the context is that combustion gases contain carbon dioxide, and 

therefore, you have to deal with the fact that carbon dioxide will have a negative influence on the 

rate of reaction. Therefore, you have to choose the temperature at which you will run the 

processes having high k p values, so that the driving forces are satisfactory. That is why people 

run rotary kills at up something like 1100, 1150, 1200, okay. Now let us take this forward a little. 
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We have d x a by please notice that the left hand side can now be written as d x a by d where it is 

a gas residence time kg c a 0 cancels off. So, you get x a star minus of x a times c a s, okay. So, 

what is tau g? Tau g is simply gas residence time where tau g is given as sorry tau g is simply v 

divided by v naught, okay. Now let me restate this equal to k g times x a star minus of x a times a 

s. What is a s? A s is surfaces area per unit volume; for film diffusion control we are looking at 

film diffusion control here. Well, the surfaces area which is relevant to the process is the external 

surface area, okay. So, we said a s is given as 4 pi r square which is the surfaces area of the 

particle; there are n particles per unit volume of the reaction equipment. 



So, this is the surface area of our interest; experimentally we can determine this quantity what is 

called as 4 by 3 pi r cubed. This is the volume number of particles divided with. Generally for 

rotary kills in fact for any reacting equipment, this epsilon r is an experimentally determinable 

number but it means how much solids are held per unit volume of the equipment. Suppose, you 

stop the rotary kill and then go on and collect all this solids, you will find there are so many you 

know cubic meters of solid per unit volume you can calculate. Epsilon r is a well-documented 

number; therefore, depending upon the rotation speed, this number can be obtained. 

So, accordingly as can now be written in terms of the epsilon r;, so it comes out to be how much 

in terms of epsilon r is how much is it? 3 epsilon r by r, okay, is it all right. So, let us substitute 

for this one here. So, you get k g x a star minus of x a; a s is thrice epsilon r by r, is it okay. If 

you have a rotary kill in which there is gas and solids are in cocurrent flow it is in a concurrent 

and flow, then directly this equation will tell us what will be the extent to which we can write the 

process, okay. So, once you know gas residence time to find out solids residence time, how do 

you find solids residence time? Solids stress tau s is simply volume of the equipment divided by 

volume of solids; all the solids you will have to find the volume. 

So, this is known. This solid volume is known because you are putting in solids at a certain rate. 

So, you know the solids volume; you know the reaction volume of the equipment. What is v 

equal to? V equal to v naught times tau g;, so you can calculate the solids residence times as 

well, okay. So, given gas residence time data, you can calculate gas solid residence time; 

therefore, you can specify the whole process on the basis of this equation. Let us say this is 

equation one, okay.  
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If instead of gas film control, suppose let us say you have a reactions control process; what do 

you have? You have a gas plus b be solid giving you c gas plus d solid, is it alright, d solid, 

correct. Now if it is under the reaction control, once again our basic equation that describes our 

process is r a dash times a s, okay. What is r a dash for reaction control? R a dash for reaction 

control look something like this is k s times c a minus c a star, okay. Once again the form is 

identical to what we have written for film diffusion control, and what is a s for reaction control? 

We have said this before; it is 4 by 3 pi r cube n divided by v, is this correct; this is epsilon r. 

So, a s is 4 pi r c square n divided by v, okay, is this okay. This is a s, and this is epsilon r. This is 

an experimentally measured experimental quantity, alright; this is an experimental quantity. So, 

this comes from experiment a s for reaction control is 4 pi r square n by v, okay. So, we can 

simplify this and now write a s as thrice epsilon r divided by r within brackets of r c square by r 

square, is it alright. So, this I will simplify this as thrice epsilon r divided by r 1 minus x b to the 

power of 2 by 3, is it ok now, alright.  
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So, let me write a s equal to thrice epsilon r divided by r multiplied by 1 minus of x b to the 

power of 2 by 3. How is x b related to x a? From our stoichiometry, we have already done this. 

So, it is simply divided by theta b. So, this comes from stoichiometry, so that now our equation 

now looks like this d f a by d v equal to k s times c a star c a minus of c a star times a s which is 

thrice epsilon r divided by r 1 minus of x a by theta b to the power of 2 by 3, okay, with a minus 

sign. So, r it is d x a by d v f a 0 with a minus sign here equal to minus k s c a minus of c a star 

thrice epsilon r by r 1 minus of x a by theta b into 2 by 3. So, what is it that we have done 

identical to what we have done for film diffusion control, similar equation is there for reaction 

control, okay. 

Now we can simplify this and write it in this form of d x a by d tau g; please recognize that it is 

tau g is gas residence time and c a can be written like this k s times x a star minus of x a 

multiplied by this effect which is by r 1 minus of x a by theta b to the power of 2 by 3, ok; is this 

alright, is it okay. So, what are we saying now? If we have reaction control instead of film 

control, the form of the equation that describes your process is given by the right hand side; k s is 

the reaction velocity, x a star is your equilibria which is already determined and all the other 

things refers to the process of epsilon r comes from experiments; capital R is the size of the 

equipment. So, this can be integrated if you know the initial condition; how do you integrate 



this? X a equal to zero, tau g is equal to zero; therefore, a forward march this can be integrated 

and we can get how x a changes with tau g.  
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Now the third example is the case of what is called as ash diffusion control. What is the ash 

diffusion control? We talked about it which said that it is the resistance to the supply of gas to 

the product layer. So, let us write our differential equation once again. We have d f a d v equal to 

some r a dash times s. What is this r a dash times s? It is the rate per unit per particle. So, I am 

just multiplying this by thrice epsilon r divided by 4 pi r cubed. Please understand what I am 

saying. What is epsilon r? Epsilon r is hold up of solids per unit volume, okay. So, that means 

every unit volumes have epsilon r cubic meters of solids. So, what is the volume of each 

particle? 4 by 3 pi r cubed; therefore, these 3 epsilon r by 4 pi r cube refers to the number of 

particles while r a dash s refers to reaction per particle. 

So, this is the rate at which reaction occurs per unit volume per unit time, okay. Now what is this 

r a dash s? We have already done this; we said this is minus of 4 pi d c a minus of c a star. We 

have done this before, okay, divided by 1 by r c minus 1 by r. We are done this also and then 

thrice epsilon r divided by 4 pi r cube, okay, is this alright. So, this r a dash s these form we 

already derived, okay. We have only multiplied by the appropriate number to take care of the 

number of particles per unit volume, okay. Now we can integrate this; so help me now. So, left 



hand side becomes f a zero d x a by d tau g with a minus sign equal to right hand side is minus of 

4 pi d. 

This becomes c a 0 x a star minus of x a divided by 1 by r c minus of 1 by r and put this here 

thrice epsilon r 4 pi r cube, thank you, okay, is it okay now, is it alright. So, let me write this in 

this form d x a by d tau g, okay, and the right hand side signs go off, c 0 cancels off. I get 4 pi d x 

a star minus of x a, okay, thrice epsilon r divided by 4 pi r squared r by r c minus of 1.  
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So, this d x a by d tau g equal to thrice epsilon r d divided by r squared within bracket. i am just 

putting this to that x a star in this form minus of x a divided by within brackets 1 minus of x a by 

theta b, okay, minus 1 by 3 minus of 1, do we all agree with this? From here, r by r c is written in 

this form, okay, yes or no. This term is r by r c squared is it, r by r c only. R by r c is what; what 

is r by r c? 1 minus of x b to the power of 1 by 3, okay, and x b is x a divided by theta b comes 

from stoichiometry, is it alright, yes or n. So, for the case of ash diffusion control, our final form 

looks like this. This is ash diffusion control, okay. 

Now we can integrate this; how do you integrate this? At tau g equal to zero, x a equal to zero, 

okay. So, therefore, if you have Runge-kutta routine if you want to integrate forward, you only 

require the right hand side at tau g equal to zero; right hand side is fully known. Therefore, we 

can forward march and then complete the integration. So, all the three cases case of reaction 



controls, case of film diffusion control, case of ash diffusion control, we have forms by which we 

can integrate forward and determine this size of the equipment for a given process that we have 

chosen, is that clear, okay. Now we can take this a little forward and look at combination of 

resistances. It is fairly elementary; we have done this earlier but let me run through this once 

again for the case of ash diffusion control for combination.  
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Let me just put down all the things once again because that makes it little easier equal to minus 

of kg c a 0 x a star minus of x a; I am just writing it again thrice epsilon r by r. This is for film 

diffusion, okay; you have done this before. Now I am writing again for the case of reaction 

control c a 0 x a star minus of x a thrice k s epsilon r by r 1 minus of x a by theta b to the power 

of 2 by 3; this is reaction control, is it alright, reaction control. Now for the case of what is this? 

This is ash diffusion control; our numbers looks like this thrice epsilon r d c a 0 x a star minus of 

x a divided by I am just writing it once again exactly what we have done before 1 minus x b a to 

the power of minus 1 by 3 minus 1. This is something that we have done just now, okay. So, this 

is for this is ash control. Therefore, if we have a rotary kill in which all the three are important, 

how do we combine them? We combine them by recognizing the following.  
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We write resistance equal to potential by flux. So, for the case of film diffusion, our resistance 

this becomes 1 by thrice k g epsilon r by r. Please look at the form here; that means thrice kg 

epsilon r by r, is this clear? I am just writing the resistance by looking at this form itself, okay. 

The resistant is potential divided by flux; therefore, it becomes 1 by with a minus sign kg thrice 

epsilon r by r. Similarly, for the next case which is film and reaction, let me write this is for film, 

okay, and epsilon omega 2 I am writing it as 1 divided by thrice k s epsilon r by r, okay, within 

brackets 1 minus x a by theta b to the power of 2 by 3. This is reaction. Let us just check this 

once again c s divided by this; it becomes 1 divided by thrice k s epsilon r by r exactly it is what 

I have written, okay, is it alright 

It comes from the previous form please I cannot show both at the same time, but if you look at 

this here, c a 0 x a star divided by this becomes just inverse of this, okay, and for the third case 

which is epsilon third that becomes minus 1 minus of x b to the power of minus 1 by 3 minus 1 

divided by thrice epsilon r divided by r square. So, this is the form in which the resistance for ash 

control, okay. So, if you want to combine all the three, our procedure is what is our procedure 

that flux equal to total potential divided by the total resistance.  
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So, let me write it in that form which means for the case of combined resistances flux which is d 

f a by d v should be equal to potential divided by summation of sigma, yes or no? So, once we 

put all the resistances together, our number looks something like this; I will not write this. In 

fact, I will write the final form because it is fairly elementary. So, the final result looks like this. 

It is not necessary to do the whole thing again and again because you have already done that 

becomes x a star minus of x a within brackets of thrice kg epsilon r by r the first one. Then you 

have thrice k s epsilon r by r within brackets of 1 minus of x a by theta b to the power of 2 by 3. 

So, this is reaction. 

Third one is ash diffusion which is epsilon r and diffusion coefficient divided by r squared 1 

minus x a by theta b. It is a little messy but you know it is something that we have to get used to 

minus 1 by 3 minus 1, okay, is it alright. So, it is exactly similar to what we have done for single 

particle. So, if you have rotary kill gas cocurrent flow of gas in solids, the gas conversion with 

respect to gas residence time is this is the potential divided by resistance, okay. The right hand 

side once again x a equals to 0 at tau g equal to 0 which means for a forward mass Runge-kutta 

routine, the right hand side is fully specified; therefore, we can integrate forward and complete 

the process by whatever is specified the rest of it can be done through the appropriate integration. 



Notice here that kg is an experimentally known quantity; k s is a known quantity; diffusion 

coefficient is a known quantity; epsilon r the holdup is a known quantity, so right hand side 

everything is known. And therefore, you will be able to determine the extent of reaction for a 

given residence time, okay. Once gas residence time is known, you know the volume of the 

equipment and if you know the volume of the equipment, you know the solid’s residence time. 

So, yours process is fully specified, okay. So, far the case of gas solid reaction taking place in a 

rotary kill under cocurrent flow, we have the process design completely specified, okay. 

Now if I ask you what is the way by which we can tell what resistance is controlling out of the 

three; whether it is film diffusion is controlling, whether it is reaction is controlling, whether it is 

ash diffusion is controlling, we said one way of knowing this is to try and do an experiment 

where we change velocities. When you change velocities mass transfer coefficient changes 

generally to the power of point eight of Reynolds number. So, you will find velocity effects 

generally affecting the mass transfer coefficient; therefore, if you do three experiments in three 

different velocities, we will able to tell whether mass transfer is an important resistance or not. 

Similarly, if you have control due to chemical reaction, chemical reactions are very strong 

functions of temperature; you do experiment the different temperatures. You will find that if it is 

important, then temperature effects will show up because reaction rates will change rapidly 

because of the choice of temperatures. If it is ash diffusion control, we know that it depends on 

square of particle size. Therefore, if we choose different particle sizes immediately that effect 

will come out. Therefore, to discern the importance of controlling regime, we essentially do 

some experiments to find at what is important, okay. Now having said this, let us look at an 

example from see we did at.  
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So, this is conversations from RTD. See what we have done so far if we look here, what is it that 

we have done so far? Here we said gas and solids are in cocurrent flow and the implicit 

assumption here is that both are in plug flow. Therefore, the residence times are the same for 

every particle. This is implicit in this formulation, but this may not be the case. Therefore, we 

will have to see what can we do in case there is an RTD. The RTD can be for gas, it can be for 

solids, okay. So, we have done this I just set it down for the case of film diffusion. Let us say 

there is a single particle and we have said this that if there is a single particle that particle 

behaves like this; we have derived this, okay. 

If there is a single particle and if it reacts and it will react in this form; if you now put this inside 

reaction equipment, this is reaction equipment where you know that it has RTDs that RTD of the 

reacting equipment is some e function. Let us say this is known to you; how does it come? It 

comes from an experiment; we have done these experiments. So, whatever be the equipment, we 

can determine what is the residence time distribution for that particular. If it is for solids, we do 

an experiment by putting a tracer on the solid state. If it is for gas, we put a gas tracer; both types 

of experiments we may have done in our undergraduate course or it can be done. It is not a very 

difficult experiment to do. 



On other words, we know what is the residence time distribution. Now what is that we want? We 

want so we have 1 minus of x b equal to 1 minus of x b 0 to infinity, can we say this? We said 

this is the context of what we have said so far is just recall what we have said? We said c a 

average equal to c a element multiplied by e t d t, okay exactly what I have written, okay; same 

thing is being written. So, the average you will see is each particle multiplied by the e t d t of that 

particle, okay. Now what happens in a gas solid reaction is that let us recognize that once again. 
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In a gas solid reaction we have 1 minus of x b equal to 0 to tau 1 minus of x b e t d t plus tau to 

infinity 1 minus of x b e t d t; can I write this? Now what happens to this integral tau to infinity 1 

minus of x b e t d t; what happens to this integral? We know that at tau x b is 1; therefore, 1 

minus of x b is 0 for all particles with time of residence greater than tau. Therefore, the second 

integral goes to zero; therefore, in gas solid reactions where the time for complete consumption 

is finite, the integral has to go from 0 to tau and not 0 to infinity, is this clear, okay. So, recognize 

that the integral goes from 0 to tau and not 0 to infinity. What we have said is that this integral 0 

to infinity have broken up and 0 to tau and tau to infinity, okay. 

Now 1 minus of x b, what is the value of 1 minus of x b for time of residence greater than tau; 

every particle is fully converted for the time of residence greater than tau. Therefore, 1 minus of 

x b for that particle is zero; therefore, the second integral is identically zero. Therefore, the 



second integral disappears, is that clear, yes or no 1 minus of x b is 0 because the time of 

residence is greater that tau. When time of residence is greater than tau, the particle is fully 

consumed fully reacted; x b is 1. Therefore, 1 minus of x b is 0; therefore, 1 minus of x b e t d t is 

0. Therefore, we delete that term, okay. 

Therefore, 1 minus of x bar b which is the average extent of reaction you will find on the particle 

is 0 to tau of 1 minus of x b e t d t. What is 1 minus of x b for the case of film diffusion control? 

We have already written 1 minus of x b, we have said it is 1 minus t by tau f; it has come from 

our single particle analysis. Therefore, 1 minus of x bar b equal to integral 0 to tau 1 minus of t 

by tau f e t d t, is this alright. What is the first term? First term is how the particle behaves, okay; 

what is the second term? Second term talks about how much time this particle is spending in the 

equipment, and it is this product which gives you the average, is this clear. 

First gives you the behavior of that particle; second term gives you how much time the particle is 

pending in the equipment. Therefore, that product gives you the average integrated over 0 to tau, 

is this clear. So, that is what is this whole thing about, okay. Now you have done for the case of 

film; this is for film diffusion control, okay, and similarly, you can do for reaction control and so 

on.  
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See I just want to begin what is called as population balance modeling. See if you look at a 

chemical reaction particularly with respect to particulates like gas solid reactions; while solids 

are moving, gas is moving and we want to understand how this solids how much time it is 

spending in the equipment; how much time gas is spending in the equipment. So, basically we 

want to get more clarity on what happens to each element that is going into the equipment. So, 

this is very nice technique and I want to present this in the simplest form; there are lot of material 

in the literature in this simplest form. I have taken an example a simple example to illustrate 

what we want to do, okay. 

Now we have been talking about stir tanks for a long time, correct. So, what do we have in 

stirred tank? We have a fluid entering the equipment at some flow and there is some 

concentration whatever that may be and comes out at some other concentration because of the 

reaction, correct. Now if I ask you, what is this s naught; what will you tell me? We will say it is 

concentration of material that is entering the equipment. Suppose, I ask you how do you know 

what that number is; you will answer saying that it is I have measured this. This is the 

measurement that I have done by taking samples, okay. Now we write our material balance, we 

write like this. This is how we generally write our material balance. 

So, this is a material coming in; this is material going out. This is the material that is generated, 

and this is what is the accumulated, okay. Now what I want to say now, you do not have to agree 

with me, but the argument is like this. What we are measuring is not s naught, we are measuring 

some average; what we are measuring is some average, would you agree with me? Any 

measurement we are doing is an average of the samples we have taken. What I now want to say 

is that this number that we are measuring is actually this. What is f naught? The f naught is the 

distribution of that property s of which we have taken samples. There are many fluid elements in 

our sample and what we have measured is some average, and that average is defined as the first 

moment of the distribution, is this clear to what we are saying. 

Every measurement we do is an average, and that average is obtained by integrating the 

distribution property first moment of the distribution property. Therefore, if f naught is the 

distribution of this property s at the feet; therefore, the average we measure is actually integral s f 

naught of s d s. Similarly, what we measure on the other side is I will call this as f s. I will put 

this as f 1; our nomenclature is f 1, is it okay, yes or no, is it okay, alright. How do we 



understand this r bar? We understand r bar equal to integral r f 1 s d s, is it okay. The meaning of 

r bar what is f 1 at the exit is also the f 1 in the equipment; that is the meaning of a stirred tank. 

We are looking at a stirred tank; we will relax all this as we go along, we will look at other 

situations where you can take care of all this. 

For the moment, f 1 at the exit is same as f 1 in the equipment; that means the distribution of the 

property that we are trying to understand, it is the same inside the equipment as it is at the exit, 

because that is the property of stirred tanks, is it ok, alright. So, what I want to do now is put this 

definitions. What I want to do now is that now that we know what is s naught what is s bar and 

what is r bar, we can substitute in this equation, yes or no.  
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So, let us substitute and see how it looks like. So, let me replace v naught integral s f naught s d s 

minus v naught integral s f 1 s d s, okay, plus integral v r f 1 s d s equal to del by del t of v s f 1 d 

s. I will put there is no space here. So, I will write like this, is it alright what I have written; have 

you written it correctly? Please tell me. Now what I am saying is that I will call this I want to 

integrate by parts. I want to integrate see this integral I want to integrate by parts. So, this is d s is 

our second function and this is the first function. So, integrating by parts please help me; let me 

just write down and you tell me whether what I have done is right. I am integrating by parts; I am 

writing the first two terms as such no change. 



Now I am integrating by parts. So, first function is the integral of the second. So, I write this as 

first function into integral of the second; I have written it like this r v f 1 s times s, okay, minus 

integral of differential of the first. Differential of the first is s del by del s r f 1, is it alright what I 

have written? Yes, please tell me, is it okay. Is this integration correct and then equal to right 

hand side del by del t because all the rest is very straightforward once we are clear about this, 

then all the rest is very straightforward, clear, ok fine, alright; that is the mistake I made. So, first 

function into integral of the second, correct, okay. 

Now what I have done is the following. What I am saying now is that let us look at carefully 

what is this term. First term is s f naught s d s; second term is s f 1 s d s; third term this term 

minus of s naught del by del s of this whole term, correct. Now what I am saying is please tell 

me whether I will do it correctly; I will just write this. Please observe what I am writing f naught 

minus of v naught f 1 minus of del by del s of r 1 v f 1 equal to del by del t of 1 v. What I am 

saying is this equation this equation here is first moment of this equation, do we agree? Suppose 

you take first moment of this equation, do you get this? What is first moment? You multiply by s 

and integrate over the interval. 

First moment of this equation is what we have got about, is it alright; we all agree with this. First 

movement of this equation I call this equation as star, then I say that first moment of star is what 

I have written above; do we all agree with this, yes or no, okay. You see carefully first moment 

of this is this excepting that this term is extra from this first moment of this; this term is coming 

out as extra, is this clear. I am going to delete that term for the moment; we will talk about it 

later. For the moment I am going to delete this term; I will give reasons for it a little later. So, 

what I am saying is that equation star represents a more fundamental statement of conservation. 

So far, we have always talked about conservation by talking about averages. 

Now we have an equation which talks about the distribution of the property which means now if 

you have a population if you know the distribution of the property of interest in that population, 

then we can now understand how the distribution changes because of whatever happens inside 

the population, okay. It can be birth; it can be death; it can be grow whatever various kinds of 

things at happen in a population we can understand. So, this is the fundamental statement of what 

we call as population balance modeling. You will find in population balance literature, people 

will starts with this equation, okay. 



They will give you no proof; this is this equation is assumed. What I have tried to do is that how 

this comes from our basic understanding of material balance in a stirred tank, okay, and what I 

have tried to tell you is that there is one term that we have deleted, okay that people delete. They 

delete this one term and then they write this star as the statement of conservation when we talk 

about populations, okay. So, hence forth we will write our material balance for population 

distributions in this form where f will refer to it can be activity of a catalyst, okay, or it can be 

size of a particle in a process where it is undergoing combustion or it could be you know how if f 

refers to a share in a market, how this share gets distributed among various people. 

So, we can talk about dynamics in an economic systems, various things we can talk about. Really 

once you understand what is this f, then we can do lot of these things, okay. Now I will prove 

this term why I have deleted I will prove that shortly as we go long and look at some examples. 

For the moment, let us assume that this is okay. Now having said this, what people do in the 

literature I will tell you. So, people do not derive it in this form; this form is it is not derived. 

Instead they do it in slightly different way; what they do is the following.  
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So, I will this as setting up population balance from basics. So, what they will do is like this. I 

will call this s; I will call this s plus d s, okay. So, what are we doing? We are trying to look at an 

interval between s and s plus d s and trying to find out what happens to this interval due to flow 



and due to reaction, okay. Now what happens to this? So, I am writing the convective flow; 

convective flow is so much material enters this interval due to convective flow, do we agree, yes 

or no; do we agree or not what I have written. See we have a stirred tank into which material is 

entering; this is our stirred tank, this is our stirred tank. 

Material is entering, material is leaving; this we say as f naught, this we say as f 1, correct. So, if 

we take an interval between s and s plus d s, we want to know what happens to this interval 

because of flow and reaction, okay, because of flow material so much material is entered and 

once again it is input minus of output plus generation equal to accumulation, okay. For the 

moment we can write for steady state may be. So, how much material is entering interval 

between s and s plus d s I say it is v naught f naught s d s, is this clear to all of you? So much 

material is entering; how much is leaving? V naught f 1 s d s, okay; now what happens to this 

interval because of reaction, okay. 

Let us see our reaction is r 1, okay. So, material the reaction is written like this. So, so much of 

material at s is entering, so much of material is leaving, can we say that? In the interval between 

s and s plus d s, so much is whatever reacting at s will contribute s plus d s, correct, r 1; this is 

that means whatever material is happening at s, it will contribute s plus d s. Therefore, whatever 

is accumulating between here is this difference is what will accumulate. So, that is equal to this 

is how our friends will write the population balance in the literature; basically understand this. 

This is how they will write; that means what is this reaction rate function? It increases the 

property; the property increases, okay. 

Therefore, s contributes s plus d s. It is this difference which will contribute to the interval 

between s and s plus d s. So, this is how in population balance modeling, they will write the 

effect of chemical reaction. Now if you take the limits as s tends to 0, our equation will look like 

this. So, this is how they would write, is this clear. How do we derive the population balance 

equation for a stirred tank, okay. So, the interesting thing is only this to understand how do we 

represent the reaction term contributing to the internal between s and s plus d s; this is how it is 

represented. Whatever reacts at s contributes to s plus d s; whatever reacts and s plus d s goes 

out. It is this difference which will accumulate in the interval. So, this it is how it is represented, 

okay. 



We have derived the same thing from fundamentals already, okay; previously we derived the 

same thing from fundamentals, is that clear, but we said we will knock out one term. I have not 

given you reasons for that; we will come to that shortly. But in the literature they will do it like 

this and not recognize that there is one term which we have knocked out, is that clear what we 

are saying. So, basically I mean what they have left out we will prove; that is not wrong, it is 

okay. But what you will see in the literature is this, okay. Therefore, if you have a stirred tank 

where the distribution of property at entrance is f naught, the distribution of property at the exit is 

f 1 and the rate at which the property changes because of this reaction is represented by r 1. 

And t 1 bar represents the residence time of that property in the equipment. Now this is what 

describes how the distribution changes because of chemical reaction, is that clear; we have ran 

out of time. So, what we will do when we meet tomorrow is that we will go through this once 

again and then try and apply this one or two situations of practical interest in our process 

industry, try and understand how we can actually determine the distribution functions, and how 

those distribution functions are affected by the process parameters, and how they are useful in 

designing equipment and understanding how the equipment will perform and so on; I will stop 

there. 


