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We get started today. We are looking at temperature effects on rate and equilibria in this 

lecture.  

(Refer Slide Time: 00:30) 

 

Now, temperature effects; we try to put together by looking at the Vant Hoff’s equation, 

a celebrated equation d l n K by d T is delta H by r T square. Now, K is the equilibrium 

constant; T is temperature in Kelvin; delta H is heat of reaction and r is the gas constant. 

Now, if delta H is not a strong function of temperature, in which case, we can integrate 

equation 1, and then get this relationship; l n k by K 2 98 is given by minus of delta H by 

r, multiplied by this term. 

Now, how good is the assumption, the delta H is not a strong function of temperature. In 

many cases, this is not such a bad assumption. The change is in delta H due to 

temperatures are not very serious. So, it is not such a bad assumption. So, we can use this 

relationship to find out if you know K at a given temperature. You can find out K at any 

other temperature using this relationship. Delta H is heat of reaction. Now, we also know 

from our basic thermodynamics, that r t l n K is minus of delta G, which is this standard 



heat of free energy of formation. So, these also another relationship we might use, if you 

are know the standard heat of free energy of formation; you can find K at accurate 

temperature. So, that is how K 298 comes, and you can get the value of K at any other 

temperature using this relationship. 

Now, let us see what it means from the point of view of our application to various 

situations. If delta h is positive, which means what? It is an endothermic reaction; 

therefore, what do we expect as temperature rises; suppose, our temperature is more than 

298, what happens to this term? This term is negative and term outside, is also negative. 

So, what it means? The whole term is positive, implying that l n K by l n 298 is positive. 

So, K at any other temperature, greater than 298 is much greater than K 298, showing 

that equilibrium constant for an endothermic reaction keeps on increasing with 

temperature; a relationship that we all know from our basic understanding of 

thermodynamics. 

Now, if delta H is negative, which is an exothermic reaction. The opposite is the kind of 

relationship, you will get; l n K by l n 298. Now, this becomes negative, correct. So, for 

an exothermic reaction, you will find that the right hand side term is negative, and 

therefore, value of K at temperature greater than 298 is less than value of K at 298, 

showing that equilibrium constant for an exothermic reaction keeps decreasing with 

temperature, as with increased temperature; once again, something that we all know from 

our basic thermodynamics. With this, let us just look at one example to understand what 

we are trying to say.  
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Let us take an example, simple case of A going to B where, we say that it is a first order 

representation for r 1 and r 2. There too, are forward and backward reactions; therefore, 

the rate of formation of B; we write it as k 1 C a minus of k 2 C b and in terms of 

conversion, it is written as k 1 times a 0, 1 minus of x and minus of k 2 c 0 x, and at 

equilibrium, of course, the r b is 0. Therefore, the equilibrium conversion is simply k by 

k plus 1; something that we also know from our basics. 
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Now, if you make a plot of the equilibrium conversion versus, temperature; it look 

something like this. Why it looks; for the case, this is the exothermic; this is 

endothermic. So, we can easily understand here, as k increases, if it is an endothermic 

reaction, k keeps on increasing; therefore, the denominator, what happens is the 

denominator x e; what happens? Denominator x e keeps on decreasing; therefore, x 

keeps on increasing. So, you will expect that x keeps on increasing with temperature for 

an endothermic reaction; x keeps on decreasing with temperature for an exothermic 

reaction. So, the equilibrium conversion keeps deceasing; for endothermic, keeps 

increasing. Let us go forward.  

(Refer Slide Time: 04:42) 

 

Let us look at how, see for an exothermic reaction as you can see here, that the reactants 

and products; products are at the lower energy than reactants; therefore, E 1 minus E 2, 

which is delta H; since, E 2 is greater than E 1, delta H is negative, which is what we 

know. Exothermic reactions; delta H is negative. For endothermic reaction, the products 

are at higher energy than reactants; therefore, E 1 minus E 2 is positive, because delta H 

is positive. So, we can use all these relationships to understand our rate function r b; 

what happens in the case of an exothermic reaction and an endothermic reaction. Let us 

look at that now. 

 

 



(Refer Slide Time: 05:16) 

 

So, if a rate function r b is k 1 C a minus of k 2 C b, then we represent them in terms of 

the (( )) dependence k 1 0 E. So, power of minus E 1 by r t and so on. So, this function, 

which can be we put in this form; I have just taken k 2 0 outside; it can be put in this 

form where, the left hand side, outside the bracket is essentially, rate constant k 2 and 

inside, is the effects of conversion and so on. If you look at this term for the case of an 

endothermic reaction, what happens to an endothermic reaction in this case? For an 

endothermic reaction, this r b is equal to; for an endothermic reaction, delta H is positive; 

therefore, this term inside as temperature rises, what do we see, the term inside?  

For an endothermic reaction, delta H is positive. As temperature increases, what happens 

to the term inside? It increases the temperature, and this is the rate constant. As 

temperature rises, rate constant increases the temperature. Therefore, you have for the 

case of an endothermic reaction, the term outside the bracket increases the temperature. 

Term inside the bracket also, increases the temperature, showing that the rate of chemical 

reaction keeps on increasing, as you increase temperature. This is for an endothermic 

reaction. Also stands to reason; we should expect that. It is endothermic; the higher the 

temperature, better it is. So, that is what we see for the case of an endothermic reaction. 

Suppose we look at the case of an exothermic reaction. The term outside bracket, as you 

increase temperature, you find that the rate constant keeps on increasing, but the term 

inside the bracket, what we find is that as delta H, as temperature increases; delta H is 



negative; therefore, this whole thing is positive. Therefore, as temperature rises, this 

whole term decreases. So, for an exothermic reaction, we find the term inside bracket 

decreases; term outside bracket increases, showing that there is a maxima. In other 

words, what we trying to say is that exothermic reversible reactions; you see a maxima in 

reaction rate. You do not see any maxima in reaction theory, if it is in endothermic 

reaction. So, this is what we are trying to say by looking at this rate function. 
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Suppose you make a plot of rate of chemical reaction.  
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This is the rate function; r b is this. Suppose you make a plot of rate of chemical reaction 

versus, temperature, what we would expect to see for an exothermic reaction is that it 

keeps on going up, and then comes down going up and comes. So, you will see there is a 

point at which, the reaction rate becomes maximum. When you plot this, you will see 

functions like this.  
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On other words, this dotted line is the locus of maxima in reaction rate. Our interest is to 

find out what is the equation to this locus, if we can find out, if the rate expressions are 

very nice, we can find the equation to the locus. In some cases, you may not be able to 

find an expression for the equation to the locus, in which case, we will do it graphically. 

In other words, this curve can be determined either, graphically or mathematically, in 

both cases. So, our interest in understanding this function is that we would like to have 

our designs, running around this locus of maximum reaction rate, because that is when, 

the reaction rates are the highest. So, you would like to see there, our systems operate as 

close to the maxima in reaction rates as possible. Also, you notice here, this I have 

shown here; graphs of r b versus, T and as you can see here, as x increases; if you look at 

this function, this is the rate function here.  
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So, what happens; as x increases, this term decreases, correct. So, what do you except to 

see; why I have shown here?  
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I have shown here, as x increases, we are moving in this direction. What it means? As x 

increases, the magnitude of the reaction rate keeps on decreasing, which is also 

understandable, because you are approaching equilibrium. So, as x increases, these lines 

go inwards; you understand what I am saying. As x increases, this term, what I am 

saying is that as x increases, these two terms have the effect of these terms that you move 



inwards, because you are moving towards the equilibria. Therefore, the net reaction rates 

are smaller and smaller. Therefore, rate is decreasing in this direction, as x; that is what 

we are saying. 
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So, our interest is to find out what is the equation to this locus? How do you determine 

the equation to the locus? As for something, that we have done before is that you simply, 

look at that function, and see where the maxima lies. So, we take the first derivative of 

this del r b by del T is constant x; that means, you are looking at what happens to r b at 

constant x. So, we can differentiate this, and then said it equal to 0; I term this x is x m; 

that means, the equation to locus of x versus T is given by this equation, 1 minus x m by 

x m is k by k E 1 by E 2. This is for the case of a first order reaction, which is reversible. 

So, if these rate functions are more complicated, it will not be such nice functions, but 

whatever, that may be; you will able to determine that function and plot that function. 
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So, we can put it in this form that x m is given by k delta; I have got delta is E 1 by E 2. 

Notice here, E 1 by E 2 is less than 1; therefore, x m equal to k delta by 1 plus k delta or 

x m equal to 1 by 1 plus 1 by k delta; this whole term is what x m is all about.  
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So, when we make a plot of x e versus T, and then x m versus T, you notice here, that x 

m always, lies below the equilibrium curve. Why is it? You can look at this function 

here. You can say that since, delta is less than 1, x m we will have to lie below the x e 

curve. So, you have an equilibrium curve; you have the locus of maximum reaction rate 



curve and therefore, you have all the information that is required for you to look at 

various design alternatives, that might be available to you. What is that we have done? If 

you have an exothermic reversible reaction, there is something called a maxima in 

reaction rate curve; there is something called the equilibrium curve, and we have to 

operate around these regions, and therefore, we look for strategies that will give us an 

appropriately, good design. 
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Let us say we are looking at a CSTR as a possible strategy for our operation. Let us look 

at one example, operating on the locus of maximum reaction rates; CSTR is in our mind. 

What is a CSTR? CSTR operates at a given temperature or in other words, the advantage 

is that you can operate at whatever, temperature you want.  
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It can be here; it can be here; it can be here; whichever temperature at which, you want, 

you can operate. Let us say you want to operate at the highest, I mean, highest 

conversion. Let us say you want this; I call this as 0.8. Suppose you want to get 0.8 

conversion in one go, or in other words, you want to get 0.8 in one go; therefore, you 

will choose this temperature of operation. Suppose you want a conversion of 0.2 at the 

maximum reaction rate, you will use this temperature of operation. On other words, 

CSTR is a device, which permits you to operate at the maxima in reaction rate curve. 

You can choose that point and run your process at that point. Then, question is how do 

you make it happen. 
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You make it happen by recognizing that you have a material balance equation; you have 

an energy balance equation; you have a constraint, which is defined by the maxima in 

reaction rate curve. We have three equations and depending upon the number of 

variables, which is specified, you have to choose the variable, which is not specified, 

which is consistent with these three equations. Then, you will be able to operate on the 

maxima in reaction rate curve. So, most important point; we must recognize is that 

CSTR is the device, which permits you to operate on the maxima in reaction rate curve.  
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The second point, which is also important is that suppose, you want a very high 

conversion; 0.8, 0.8, whatever, 0.95 of the equilibria. So, you will be operating at 

somewhere here, which means, you will choose this temperature. This temperature can 

be very low. The reason is exothermic reversible reactions; if you want to get higher and 

higher conversions, your equilibrium constant will tell you the ratio to go to very low 

temperatures, and therefore, that reactor operates at a very low temperature. Therefore, 

your reaction rates are very low. So, you are looking at a huge device; a device, which is 

very large in size. Even though, you can do it in one stage, but you might find an 

equipment, which is so large; it is not satisfactory from an economic point of view. 

Therefore, you will often have to go through what is called as an optimization to get a 

proper size for which, you will choose stage 1 here; stage 2 here; stage 3 here; stage 4 

here.  
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In other words, you will operate 1, 2, 3, 4, 5, 6 number of stages. At each stage, the 

temperature of operation is as per the maxima in reaction rate curve.  
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For each of these stages, the heat load that you must add or remove will be specified by 

these three equations; 1, 2, 3. So, having chosen the temperature from here, this defines x 

m; this defines conversion, sorry, resistance time and this will define the heat load. You 

can see here. If I specify temperature, it will tell you what is the conversion at which, 

you should operate. The moment you know conversion, I can determine the resistance 

time from here. The moment you know resistance time, I can determine from here, the 

heat load to be added or removed. In other words, for every choice of temperature, the 

equations 1, 2 and 3 will specify the conditions under which, you should operate your 

process. So, 1, 2 and 3 tells you how to make sure that you get what you want. We also 

recognize that an optimal choice is a choice of decreasing temperature.  
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Exothermic reversible reaction; the optimal choice is a choice of decreasing 

temperatures, and therefore, a choice of decreasing reaction rates. Therefore, larger and 

larger equipment; this is what this curve tells you. Yes, number of CSTRs; stage 1, stage 

2, stage 3, stage 4, stage 5. Instead, you can do this; go up to 0.8 or 0.9 of the equilibria 

in one stage, but the reaction rates are very low, because of the fact that you are 

operating at such a low temperature. Yes, size; see, if you are going to operate with 

conversion at 0.8, what it means is that the actual concentrations are very low, and to get 

along this maxima in reaction rate curve, you will choose a temperature as per this curve, 

and that will turn out to be a very low temperature, compared to higher conversions. So, 

this temperature being very low; reaction rates are very low; low temperature; low 

reaction rates and therefore, the equipment sizes are very large. Instead, if you operate a 

multistage; stage 1 at this temperature; stage 2 at this temperature; stage 3 say, you will 

find that the net size of that equipment will be much in superior, compared to a single 

stage operating at 0.8. 

So, what we are trying to say is that a multistage CSTR design; the optimal design will 

be a design of decreasing temperatures, chosen along the maxima in reaction rate curve. 

The fact that the temperatures are decreasing, the reaction rates are decreasing; therefore, 

the sizes are necessarily large. Suppose, instead, we have a multistage PFR.  

 



(Refer Slide Time: 17:20) 

 

A question is often asked; why a multistage PFR when you can as well, operate a 

multistage CSTR along the locus of maximum reaction rates? We will try to address this 

question as we go along. Once again, we have our reaction, A goes to B. You have a 

design equation; this is for the design equation of a PFR which, we have p c p d t d v r 1 

minus of r 2, times delta H 1 star q. Let us, for the moment, think that it is an adiabatic, 

so that, we remove this term and these two terms. So, that we have only an adiabatic 

process. This is the material balance, F a 0 d x d v, r 1 minus of r 2. There are two 

equations, dividing one by the other.  
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You get a relationship, which tells us that the temperature variation; this is the 

temperature variation in our process v c p F a 0 divided d t d x minus of delta H. Now, if 

in this particular case, for example, A goes to B; the volume change due to reaction is not 

there, but there could be change in temperature. As a result of which, volumes may 

change. Suppose for example, we assume that volume does not change, as an example. 

Then, v becomes v naught; therefore, this term becomes v naught by F a 0 is C a 0. 

Therefore, you will find C a 0, multiplied by delta H. This is how I have written it in the 

next page.  
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See therefore, d t d x becomes C a 0 times j, which is a constant. Therefore, d t d x 

becomes a constant, times C a 0. What we are saying is that if you have a reaction, A 

goes to B; you conduct this reaction adiabatically, in a PFR; if v equal to v naught is a 

satisfactory assumption, then d t d x becomes a constant, which is C a 0 times j. What is 

j; j is heat of reaction, divided by volumetric specific heat; it is a known quantity. A 

constant d t d x means what? If you make a plot of T versus x, it will be a straight line. 

So, when you make a plot, let us just do that.  
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When you make a plot of x versus T, if you are starting at T 0, then this is a straight line. 

It can go up to the equilibrium curve. We go, you can go up to equilibrium curve. As you 

are moving along this curve, what do you expect? The temperature is increasing; 

conversion is increasing. At this point, the reaction rate has reached a maxima, and as 

you move from this point towards the equilibrium curve, the reaction rates are 

decreasing. On other words, from point T 0 as move towards, reaction rates are 

increasing up to this point and it is decreasing. Now, if you are doing a design of a single 

stage, of course, you will find, because of the fact that it is a reversible reaction; you are 

able to reach only up to this point. Say sulfur dioxide for example or ammonia for 

example, or instances where, the reactions are reversible; therefore, in one stage, you are 

not able to push the reaction to its completion. So, the question is what is it that you do? 

So, what people do is that they cool this, and run another stage. They will cool this.  
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So, if you are starting from here, they will cool, run another stage, run another still, you 

are able to get the extent of reaction that you expect. Why multistage?  
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The answer to why multistage is that in one stage, we are not able to push the reaction to 

the end point that you desire. Why you are not able to push it to the end point of your 

desire, because your reaction is reversible and therefore, as you move along the reactor, 

you will at least, you will end up in the end point at the equilibrium point. Therefore, you 

cannot go forward and since, the reaction rate becomes very small, you will stop 



somewhere, in little earlier than that; otherwise, it will become unwilling to operate. So, 

you will stop the process slightly, before it reaches equilibrium, and then you will run the 

next stage after cooling it.  
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So, the idea of this cooling from one point to another is to give you the ability to go to 

higher level of conversion. So, this point, this point; all these points are points of design 

decisions; decisions that will determine the economics of your process. So, how far you 

go in one stage; how far you cool during the interstage cooling, and all these are 

decisions, coming from economics only. So, you will have to do a number of iterations, 

before you get the design that satisfies your economic criteria; is that clear? Of course, 

criteria is not just economic; there are safety criteria; there are various other issues that 

goes into your objective function, but once the objective function is defined, you can 

definitely, take care of all those calculations and come up with the best kind of design. 
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There is another issue that frequently, we encounter is that if our initial temperature is T 

0; therefore, let us say this is our T 0; I will just draw here; this is T 0. Now, you notice 

here, that if your T 0 becomes much higher; that means, if you are able to preheat your 

feed to a higher temperature, then you are able to, I mean, achieve a far better extent of 

reaction, because you are able to go forward to the end point. On other words, if you can 

heat the feed to as high as temperature as possible, you are able to approach as close; let 

us say you are able to heat it up to this point; you are much closer to the maxima in 

reaction rate curve. On other words, preheating the feed, facilitates you to reach as close 

to the maxima in reaction curve as possible, and to that extent, you are able to save on 

this size of your equipment. 
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So, the idea of preheating is this; if you start here you will get a much bigger reaction 

equipment, but if you start here, it is a much smaller reaction equipment, because you are 

much closer to the maxima in reaction rate curve. This is something, you will see if you 

go to ammonia or if you go to the sulfur dioxide reactor, these are things that is done 

routinely, to provide the appropriate optimization. Now, this interstage cooling, as you 

can see; these are all interstage cooling; which actually, permits you to go to higher and 

higher conversions. For a gas phase reaction, this interstage cooling is a huge investment. 

Why is it, because gas phase heat transfer coefficients are small, and therefore, and if the 

reaction is at high pressure for example, you are talking about high pressure equipment, 

at the same time, very small heat transfer coefficient. Ammonia is such an example.  

What? Yes, number of stages might increase, but the overall size of the equipment will 

come down. Yes, this is the optimization you will do. See, you have to do this 

optimization to find out what is the best. I mean, too many stages; there are problems; all 

those issue are part of your objective function that you will have to set for yourself, but 

even more important is that, this interstage cooling where, if it is a gas phase reaction; it 

is a huge investment, because its heat transfer coefficients are very low, and therefore, 

the size of this, size of the reaction equipment and size of the cooling equipment; we 

have to take both into account, so that, your cost optimization is taken care. Ammonia 

and sulfur dioxide; these are all instances; these are all gas phase reactions; (( )) and all 

those issues associated with problems that you will encounter. 



So, you have to do both the cooling equipment design, as well as the reaction equipment 

design, so that, you are able to get the overall objective as per you are objective setup. 

Now, if you if you go to sulfur dioxide, they say what is called as DCDA, the process 

that operates around the world, is called double contact double absorption. What is meant 

by double contact?  

(Refer Slide Time: 25:13) 

 

See, you have this contact; this is contact; that means, you have pushed the reaction to a 

certain extent. Then, you take this gas for absorption; that means, you observe this O 3, 

and then you bring them back into the process. Absorb means automatically, it cools. So, 

this cooling and absorption go together, and then you do another stage. So, this is 

contact. Then, this is absorption; contact absorption. So, they have double contact, 

double absorption; this is what is in the sulfur dioxide process. It is only two stage 

process where, you take it to the end point. This is something that you will see. With 

ammonia, I mean, ammonia; nowadays, people do what they call as radial flow. You 

may have come across this radial flow. The advantages of radial flow; let me just do a 

small calculation for you.  
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These are concelentric cylinders; your catalyst is here. You have fed; the gases are 

moving in like this. This is perforated, and then it goes out through this. This is also 

perforated. So, gases are moving inwards. Now, if it is a reaction, in which, there is a 

decrease in volume; s o 2 plus half 4 2 is the s o 3. There is a decrease in volume. You 

can see the facilitation. So, the volume decreases; the volume of flow volume also 

decreases. So, radial flow has certain advantages, and by keeping this thickness very 

small. So, you can keep this thickness very small by choosing the size of the cylinders 

and therefore, the amount of reaction, the extent of reaction is controlled; number 1. The 

extent of heat, I mean, heat release or what is called as temperature rise, is also within 

the limits that you would have specified. 

So, the important thing about this radial flow is that you are able to regulate all that; 

ensure that the catalyst, I mean, does not deactivate, because of very high temperatures. 

So, ammonia and sulfur dioxide are good examples in which, this kind of issues become 

serious.  
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Now, there is another point we want to look at is we looked at del r b by del t at constant 

x, and we showed plots of r b versus x, and r b versus T, and then now, what we want to 

see is that what happens to this function, del x del t at constant r b; del x del t at constant 

r b or in other words, what we are saying that we will take this function r b as some 

constant value, some gamma, and see, how this function del x del t at constant r b looks 

like. Why we want to do this? We will see shortly. So, we want just like we have done 

del r b del t at constant x. Now, we are going to look at del x del t at constant r b.  

(Refer Slide Time: 28:22) 

 



To do that, what I have done is setup this function once again; that means, I have taken r 

b as constant, and then it is k 1 C a 0, 1 minus 0 x, k 2 C a 0 x. Just setup the rate 

function in the form that we all know, and then I divided throughout by k 1 C a 0, so that, 

the right hand side looks like this; 1 minus of x, x divided by k. Why is it divided by k? 

This k 2 divided by k 1 is k; is it all right? I have divided throughout by k and C a 0; is 

this all right, what I have done? When you do that, first term is 1 minus of x; the second 

term is C a 0 cancels off; k 2 by k 1 is written as capital K. Now, I have combined x 

together; it looks like this.  
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Therefore, the relationship between x and temperature looks like this where, the 

temperature dependence is involved in capital K and small k. So, x, for a given reaction 

rate, x is related to that by this equation 3; is it ok? Now, if you differentiate x with 

respect to t; del x del t at constant r b; constant r b means constant gamma; gamma does 

not change. So, we want to do del x del t at; why do you want to do this? What is the 

rationale for doing this? The rationale for doing this is the following; what is this term k 

by k plus 1? I put it in this form.  
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I have just this term, k by k plus 1 is 1 by 1 plus k. As temperature increases, if it is in 

exothermic reaction, what happens to k; it decreases. So, what happens to this whole 

term? So, k by k plus 1; what happens? Decreases, k by k plus 1 decreases as x increases. 

What happens to the first term, 1 minus gamma by k 1 C a 0? As you increase 

temperature, k increases and therefore, this whole thing decreases. Therefore, this whole 

thing increases. So, what we are saying is that for an exothermic reversible reaction, x 

equal to this term; the first term increases this temperature; the second term decreases 

temperature. Is this point clear to all of us? This function, what we have done? We have 

done; just run through this once again.  

 

 

 

 

 

 

 



 

(Refer Slide Time: 30:42) 

 

We want to look at this function r b for the case, when r is held constant, and we change 

temperature. This is what we are trying to do. So, we want to see what happens to that 

function, for which, we have said we have divided throughout by k 1 C a 0 and got this 

function and so on.  
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So, this increases; this decreases; and therefore, there is a maxima for the value of x. So, 

x versus T should show a maxima. To find out what that maxima is, what we have said is 

that we want to see how that function looks like. Let us do this once again.  
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What we have done previously? What we did was del r b del t at constant x; that means, 

rate of change of rate with respect to temperature, keeping x constant. What we are now 

doing is that rate of change of x with respect to T, keeping r constant. So, we are looking 

at the same function in two different ways. These contours need not be the same; it 

depends on the function and so on. So, we are looking at the same thing in a different 

way to see whether, there is something more to be learned at least, from the point of veiw 

of a design.  

So, we are now doing, not del r b by del t; this we have done already. We want to see del 

r; we want to keep r b constant, and see what happens to this function as temperature 

changes. Now, we are doing del x del t at constant r b. To do that, what we have done is 

the following. We have said this is; I must have misplaced; I put it somewhere else; 

anyway, does not matter.  
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Anyway, this is our function, which is r b equal to gamma. This is the function we want 

to understand. To understand how x versus T changes when gamma is constant, I divided 

throughout by k 1 C a 0. Then, our x looks like this where, gamma is the constant. We 

want to now do del x del t at constant r b; del x del t, gamma is constant. When you do 

that, this function; this is the function we want to maximize. So, this is the function, x 

equal to 1 minus gamma k by k plus 1, del x del t at constant r b. So, this is what we 

want to do now. Here, this k 1 is the function of temperature, sorry, k 1 is the function of 

temperature. This k is also a function of temperature, correct. So, we want to 

differentiate this by parts. This is what was done. So, I am differentiating this by parts. 
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Let me write this here, so that, we remember; x equal to 1 minus gamma k 1 C a 0 into k 

by k plus 1. This is what we are differentiating. So, we are differentiating this. You can 

see here del x del T is 0. So, I have got minus k 1. Minus and minus cancels off; k 1 C a 

square; d k 1 by d t is k 1 E 1 by r t squared; it is there, k by k plus; this is the first term; 

is first term ok? Differentiate the first term. See, this minus term has disappeared, 

because k 1 squared with the minus n comes.  

So, that is ok, and then d k 1 by d t is k 1 E 1 by r t square; that is fine. So, this term is all 

right. Second term; first this remains, and then multiplied by; you have to differentiate 

this. When I differentiate this, it will become 1 by k plus 1 d k d t, is fine. Then, 

differentiate the denominator, k plus 1 whole squared, correct, with the minus sign d k, 

fine; looks all right. So, equal to 0; this is how it looks. Now, I have to do some 

manipulation. What manipulations have I done; d k d t; what is d k d t? I have got here d 

k d t is; d l n k d t is delta H by r t squared. So, 1 by k d k d t is; I put d k d t is k delta H 

by r t square; is this ok? So, I have replaced this d k d t by k by r t square delta H, all 

right. So, this only, we have to simplify. 
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Now, let us see how we simplify. See, this is what we had, correct. This is what we had. 

This is gamma k 1 E 1 delta H. Now, I am writing it like this; 0 gamma k 1. What 

happened to k 1? k 1 got cancelled, correct, k 1 C a 0 squared k by k plus 1, 1 minus of k, 

k by k plus 1 whole squared; k plus 1 whole square is coming from where? Which one; 

this term. 

Student: Yes sir. 

Prof: What should it be? This one? 

Student: Yes sir. 

This would be C a naught; thank you. Now, it can be rearranged like this. I think I have 

missed it there, but I have got it right here, I think. So, what we are saying is that del x 

del t at constant r b; if you set it equal to 0, this relationship is what we get; that means, 

this relationship is what comes out of that differentiation, and I have done some more 

manipulations; some very elementary algebra is involved. What I have done is that I 

have replaced this delta H as E 1 minus o. 
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So, this delta H; I am putting it as E 1 minus of E 2. This delta H; where are we? This 

delta H; I have put E 1 minus of E 2; it simplifies like this, anyway. Basically, what we 

are saying is that gamma k 1 C a 0 actually, turns out something like this. This is the 

final form in which, we get 1 minus of gamma k 1 C a 0 comes out to be E 1 k 1 plus. 

So, a relationship which is involved some amount of algebra. Gamma is the reaction rate, 

which is held constant.  

(Refer Slide Time: 36:27) 

 



We started with this equation, correct; x given by 1 minus of gamma k 1 C a 0; this is 

basically, this is the basic balance. So, what we are saying is that equation 1 holds, as 

well as if you want maxima, del x del t at constant r b; this also should hold; equation 6 

and this is equation 1.  
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If we manipulate further, you get essentially, you end up with this relationship that for 

the case of del x del t at constant r b equal to 0, you get x equal to k delta by 1 plus k 

delta. After going through this algebra, what we have done?  
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We started with this rate function; r b equal to this.  
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Then, we said that this can be simplified to x equal to this. Then we did del x del t at 

constant r b and found that the relationship that satisfies del x del t at constant r b is 

given by x equal to k delta by 1 plus k delta, and this is exactly, the same relationship we 

got for del r del t at constant x. So, what we are saying is del r del t at constant x, and 

then del x del t at constant r b; the locus is the same. What we are saying is the 

following.  
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Let us just run through the whole thing. We started and said this is see, del r del t at 

constant x; it is this.  
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This, we have done earlier, and what is the equation; del r del t constant x or x m is given 

by k delta by; this is x m given k delta by 1 plus k delta. That is for the case of del r del t 

at constant x.  
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Now, what we are saying is that for the case of del x del t at constant r b also, gives you 

k delta by 1 plus k delta. In other words, we are saying that this locus also, applies for del 

x del t at constant r b.  
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So, this also applies for del x del t at constant r b; the locus is the same. So, what we are 

trying to do is that to show that locus of del r del t at constant x and del x del t at constant 

r b; it is the same. Somehow, this is not clearly brought out in many text; that is what I 

find. There is a book written in 1965, in which, he says in passing that you see; it is the 

same, but somehow, it is not proved anywhere. So, I thought it is worth, sort of going 

through this effort and proving this. It comes nicely, actually. 

 

 

 

 

 

 

 



(Refer Slide Time: 39:12) 

 

So, let us look at where is our function r; this is our function r, correct; r equal to k 1 C a 

0, 1 minus k 2 c. So, we can plot this function, correct. This function r can be plotted for 

different values of r. When you plot this, see, I have just plotted for different values of r.  
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So, what are we getting here? For different values of r, you are getting your maxima. The 

maxima is coming at that point only. The reaction rates for the assumed values of r 

where, the maxima appears and the other one; both are coming out on the same locus. 

So, the point that we trying to get across here is that if you look at a point somewhere 



here, somewhere here, which is what; these are the points what is called as d x d t. This 

is our equation here; T minus T 0; we did this a little earlier; I would not be able to find it 

now, but let me write here; T minus of T 0; this is what adiabatic PFR, is given by C a 0 

delta H, x divided by C p. We have done this a little earlier. 
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What is d t d x here; d t d x or d x d t is 1 by j C a 0; d t d x is j C a 0. Therefore, d x d t 

is. So, what is that? Suppose, I want to locate that point; I can locate that point here. You 

can see, locate this point. These are the points at which, d x d t is 1 by j C a 0 or d t d x is 

j C a 0. Is that clear? So, d t d x; actually, the highest value that d t d x will takes is j C a 

0. In other words, plots of x wards, in the plots of x t curve, the point where, d t d x is the 

highest value; I have shown by dotted line here. You see this is the dotted line, showing 

locus of points on this x t curve where, the rate of change of t versus x is the highest 

value, which is j C a 0. This is shown as a dotted line. 

So, we have three; one is the equilibrium curve; one is the maximum reaction rate curve, 

you call it del r b del t at constant x or del x del t at constant r b; both are the same. There 

is a third line, which is shown as a dotted line, which is corresponding to d t d x equal to 

j C a 0. Now, the interesting point about d t d x at j C a 0 is that d t d x means, the rate at 

which, temperature changes as conversion changes. This is the point where, the process 

is most sensitive to control, because here, the change is the highest. Whatever the process 

may be, you are seeing your change as the highest. So, d t d x has the highest value as j C 



a 0. So, a process control around this point, would be most effective. At any other point, 

it may not be as effective.  

(Refer Slide Time: 42:13) 

 

So, the region of design; often people draw a point there, point here, which is something 

like, some, let we say 98 percent of equilibrium conversion.  
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Say this is the region in which, your design must lie. Your region of design is between 

this dotted line, and a line, which is not at the equilibrium curve, but somewhere, close to 



the equilibrium curve. Some people take it 98 percent equilibria; some people do less; 

depends upon the objective function that you set for yourself. 

So, what we have tried to put across here is that looking at the temperature effects on 

chemical reaction; we have defined a region over which, you should look at your design, 

and with respect to the objective that you would set for yourself. This objective may 

involve cost; may involve safety; may involve consumption of water; consumption of 

utility; so many. See, some people look only at cost, but in many cases, cost alone, may 

not be criteria. In many designs today, the most important criteria is water. There is not 

enough water, I mean, water may not cost you so much; it may cost you some 50 rupees 

or 40 rupees. The fact is that it is not there. So, consumption of water is something that 

has to enter your objective function. There are various issues like this which, enters and 

as a result of which, the design that you will finely end up, will have all the 

compromises. That is required to make sure that the plant actually, runs satisfactorily.  

I will stop there.  


