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Lecture - 10 

Semi Continuous Reactor Operation 

 

We are going to be looking at a time dependent operations in this lecture. Of course, the 

need for a time dependence, of course, is quite obvious, when we are looking at batch 

operations, you know, time is the essence; how long you take to complete the process 

and so on.  
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There are several other cases in which, your time dependence becomes important. For 

example, if you are starting up a process, how long does it take to reach steady state and 

what are the conditions that you could make use of to see that this time that is required to 

reach steady state is a as quickly as possible, there could be a semi batch operation in 

which you have to remove a material from a process and so on, and how long it takes; 

there where, time is a crucial element in several operations where, we talking about batch 

or semi batch kind of operations. So, here, we will look at some examples to illustrate 

how we can deal with such situations, and come to a way by which, we can formulate 

our equations to take care of these kind of situations. 
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So, first exercise, we would like to look at is for example, start up; I will just take the 

example of start up. So, start up of a CSTR. What do we have? We have a CSTR, let us 

say, to which, material is coming in and material is going out; it is well stirred; say, it is 

C a 0 coming in at v 0. As an example, we will say that there is a reaction, A going to B 

taking place, and these rate functions are a; let us say, k times C a as an example. Let us 

say that initially, this is the material here; the initial C a in reactor, equal to C a I, let us 

say. This is the initial condition which, we want. So, we want to see how long it takes for 

this process to reach steady state; number one, and what else that we can do to see that 

you know, the steady state is attained, as quickly as possible. It is something that is a 

great interest to us if you are starting up a CSTR on a daily basis for some process. So, 

how do we deal with this? Let us say we write our material balance, which is what input, 

output, plus generation, equal to accumulation. This is our statement of material balance. 

Input; I will say input. This is output; this is generation; this is the accumulation, all 

right. 
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Let us see how, what we can do with this. I will write this as v naught, C a naught; that is 

input, and then see, v C a; that is output. Then, say our reaction is k times C a equal to d 

by d t of what is n a, which is v times C a. So, we can say that v naught equal to v, which 

means that there the flow or the inlet; I will draw it once again here; what we are saying 

here is that if this is v naught, we are saying that this is also v naught. This typically, 

what we might expect; v equal to v naught, and then we assume that capital V is 

constant, which means that the amount of fluid in the equipment, remains constant; that 

is what we saying. So, this can come out of the derivative and so on.  

Therefore, we can write this as C a naught. So, if I say tau, the residence time as V by v 

naught; therefore, this becomes minus tau, and then C a by tau, minus of k times C a, 

equal to d by dt of C a, or write this as C a naught, minus of C a, minus of k tau C a, 

equal to d by d t of C a. I just forgot to multiply by tau. Therefore, let me write this as tau 

times d by d t of C a, plus 1 plus k tau times C a, equal to C a 0. So, this is the equation 

that describes the stirred tank during the unsteady state. So, what is the integrating 

factor? Integrating infector is e raise to the power of 1 plus k tau, multiplied by; I will put 

this tau here; there, I will put this tau here. So, it is tau integral d t. So, this is the 

integrating factor. So, we can integrate this and I will write the solutions, so that, we do 

not spend too much time in trying to do what we know, quite well. 
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So, I will write the solution. As the solution, I mean, we can solve that by the integration 

factor and all that. So, solution looks like this. Solution is C a equal to C a 0 by 1 plus k 

tau, plus constant of integration, multiplied by e raise to the power of minus 1, plus k tau 

t by tau. So, solution to the C s; what we are saying once again, let us just not forget the 

physics in this situation; we have stirred tank materials, coming in and going out. The 

reaction is taking place. This is v naught and C a naught and C a and so on. So, this is the 

solution. We want to find the constant of integration. At t equal to 0, we have said that C 

a equal to C a i; this is the assumption.  

So, if you put this here, you get the constant of integration becomes, we required obvious 

constant of integration; you can just see very easily that is C a i minus of C a naught, 

divided by 1 plus k tau. So, this is the constant of integration. You can substitute here. 

Therefore, solution becomes C a equal to C a naught, divided by 1 plus k tau, plus C a i 

minus of C a naught by 1 plus k tau; this is the constant of integration, multiplied by e 

raise to power of 1 plus k tau, multiplied by t by tau. So, this is the solution to the case of 

a start up of a stirred tank. So, what is that we are saying; that if you have a stirred tank 

and you started up with c equal to C a; this is initially C a i. So, this is the unsteady state 

behavior of the stirred tank. 

Now, let us see what happens at t equal to infinity; this becomes 0. So, what happens at t 

equal to infinity? C a equal to what shall we say? At t equal to infinity, if this whole 



terms appear; therefore, C a becomes C a naught by 1 plus k tau; this is something that 

we know from our understanding of stirred tanks, but what is more important is if I ask 

you how long does it take if we appropriately, choose C a I; the question is if we choose 

C a i equal to C a naught, divided by 1 plus k tau, then the time to reach steady state is 

nil, or in other words, the process operates at steady state from time t equal to 0. On other 

words, by appropriate choice of the initial state in the CSTR, in the equipment, you can 

actually avoid that time that you will lose in breathing steady state. This is the point that 

is to be remembered that this time required to reach steady state. So, let me just put it 

down in this.  
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If C a i equal to C a naught, divided by 1 plus k tau, if C a i is so chosen, that it is equal 

to C a naught, then you find that C a, at any time t of becomes equal to 1 plus k tau. On 

other words, the output is independent of time. So, this CSTR is able to reach steady 

state, immediately, so that, you are able to avoid that time that is lost in reaching steady 

state. So, to cut the long story short, what we are trying to say is that start up of a CSTR, 

you can actually, achieve practically, the final endpoint by appropriate choice of C a i. If 

you choose C a i properly, your steady state is obtained very quickly, and therefore, your 

process is able to run at steady state, without losing too much time. So, this is the most 

important aspect of this unsteady state that we should recognize by an appropriate choice 

of the initial state. 
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We are looking at an illustrative exercise to understand how we can apply the design 

equations we have derived. The problem is we have a stirred tank, CSTR to which, a 

component A enters and goes out. A reaction 2A going to B, is taking place; a 

dimidiation reaction. The rate function r a is given as minus of k times C a squared. The 

rate constant k is 60 liters per gram mole per minute. The reactor works in three 

atmospheres and temperature of 400 c. The problem is in two parts. First part; we have to 

find out what is the volume of this equipment for a conversion of 0.5. We will do that 

first, and then we look at the second part, a little later. Now, to be able to handle a 

problem like this where, there is a change in volume, because of chemical reaction; we 

have to write the stoichiometric table and take into account how the volume change can 

be appropriately, taken into account.  

So, you have component A and component B. Component A comes in at F a 0. There is 

no component B at the inlet. At the outlet, if conversion is defined with respect to 

component A, we know that the outlet flow will be F a 0 times 1 minus of x as statement 

of material balance, and component B; nothing is coming in at the inlet and it reacts as 

per this twice A, going to B or A going to half B. Therefore, the amount of B form, will 

be F a 0 x by 2. So, if you add the inputs and the outputs; input, if you add, it is F t 0; it is 

the total moles of component A coming in, which is same as F a 0 and the total moles of 

what goes out as if you can add A and B together, you find that is F a 0 times 1 minus of 

x by 2. So, that you know that F t 0, which is F a 0 and it becomes F a 0 times 1 minus of 



x by 2, and you can see there is a change in the number of moles, because of chemical 

reaction. 

Now, to be able to account for the effect of this what we do is that we apply what is 

called as called as gas law, because this reaction twice A going to B, is a gas phase 

reaction. Now, we know from our gas law that v by v 0 is F t by F t 0, t by t 0, p 0 by p 

and so on, and since, gas is taken as ideal, we have simply, it is F t by F t 0. Why is that, 

because there is no change in pressure; there is no in temperature and therefore, those 

effects are removed. Therefore, you have v by v 0 is simply, F t by F t 0. What is v? v is 

a volumetric flow at the outlet and v 0 is the volumetric flow at the inlet. So, v by v 0 

tells us the change in volume, because of chemical reaction. Now, F t by F t 0; you can 

see from here, F t divided by F t 0 is simply, 1 minus of x by 2. Therefore, we get v by v 

0 is 1 minus of x by 2. So, essentially, we are now taken into account, the fact that there 

is a change in volume, and that effect of change in volume is now expressed, in terms of 

extent of reaction on conversion with respect to component A as reference. 

Now, if you have to calculate what is C a and C b, because we require C a in our rate 

expression. We now want to calculate what is C a. Now, C a by definition, F a divided 

by v where, F a is the molar flow rate at the exit and v is the volumetric flow rate at the 

exit. Now, F a from here, we find it is F a 0 times 1 minus of x and volumetric flow is v 

is v 0 times 1 minus of x by 2. Therefore, we find C a at the exit is F a 0 times 1 minus of 

x, divided by v 0 times 1 minus x by 2. So, that we get C a as C a 0 times 1 minus of x, 

divided by 1 minus of x by 2. So, we are now able to substitute for this C a in the rate 

expression, so that, now we can use that result effectively. Now, what is C b? C b by 

definition, is F b by v and that becomes C a 0 x by 2, divided by 1 minus of x by 2. So, 

what we have done is that using the fact that there is volume change, we have been able 

to express concentrations in terms of conversion. We have done all this. Now, what is 

important is we have to calculate what are the values of these numbers?  
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For example, what is C a 0? C a 0 by definition, is P by RT; this is gas law. What is 

pressure is given as 3 atmospheres; the gas constant is 0.082 liter atmosphere per gram 

mole at degree k and the temperature is 673, which is 400 c. So, that you find that C a 0 

is 0.0544. Now, what is C a? We have just now said C a is C a 0, 1 minus of x, divided 

by 1 minus of x by 2. Therefore, we can now put all the numbers and find out that C a at 

the exit is equal to 0.03 c at the exit. This is the exit; exit C a. C a at the exit is 0.036 

moles per liter and what is C b is F a 0 x by 2, divided by v 0, 1 minus of x by 2, which 

you have already said, and if you put all the numbers, it becomes 0.018 mole per liter. 

So, we have calculated what is C a and what is C b, as soon as we also calculated what is 

C a 0. Now, we are in position to put these things in our design equation to find out what 

is the volume of the equipment that is required to obtain a conversion of 0.5. Let us do 

that now.  
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What we have done now? We said v equal to F a 0 x divided by minus of r a and this 

substituting of minus of r a, which is; what is minus of r a? Minus of r a is k times C a 

squared and therefore, I am putting k is here and what is C a, which this C a 0 squared, 

multiplied by 1 minus of x, divided by 1 minus of x by 2, which have derived all these. 

Therefore, now we know the volume of the equipment is given by the right hand side. 

Now, we know what is F a 0; we know what is x; we know all the numbers here. If you 

put all the numbers, you can get the volume of the equipment to be 6.35 liters; putting all 

the numbers; k is 60; C a 0 is known. So, everything is known here, and therefore, we 

can calculate what is the volume of the equipment, which turns out to be 6.35 liters. 

Now, the second part of the exercise is quite interesting.  
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Second part of the exercise; what is this in the second part of the exercise. What it says is 

now, as this CSTR, which is running at steady state at an instant of time, when the steady 

state is achieved, and the process is running at x is equal to 0.5; we close the outlet valve. 

All the outlet valves are closed and the inlet flow F a 0 is adjusted. So, that the pressure 

remains constant; temperature remains constant. Temperature remains constant, because 

we maintain temperature constant. So, question is how long would it take for the outlet 

mole fraction here, sorry, how long the mole fraction inside the equipment to become 

0.9? Let me repeat; the question is when the process is running at steady state, we close 

the outlet valves and we adjust the flow entering the equipment. So, that pressure 

remains constant and we want to find out how long it would take for the equipment, for 

the composition inside the equipment, to reach y b or mole fraction of y, component b is 

0.9. So, this is what we would like to do now. 

Now, clearly, this is an instance of an unsteady process. Therefore, we have to set up our 

balances to take into account the fact that it is an unsteady state process. Now, let us see 

how to address this.  
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Now, what we said is that we are adjusting; let me just draw it once again; we are 

adjusting; we have this feed is coming in, but there is no output. This is all F a 0 and it is 

a function of time. So, if you write a material balance for A and B, you have material 

balance for A and material balance for B. Let us see what it is. Input F a 0 of t, which is 

function of time; output, there is no output, plus generation equal to accumulation. Input 

of B, output of B, generation of B, equal to accumulation of B. We know that there is no 

output of A, because the valves are closed. Therefore, F a disappears. Similarly, if you 

look at component B, there is no input of component B; there is no output of component 

B and therefore, rate of generation of component B equal to accumulation of component 

B. So, the material balance for A and B gives us these equations 1 and equations 2 

Now, let us recognize that this is a gas phase reaction where, pressure is constant; 

temperature is constant; volume is constant. Volume is constant, because the equipment 

volume does not change. Now, here is an instance of a gas phase reaction where, 

temperature is constant; pressure is constant; volume is constant. Therefore, we should 

expect that the number of moles inside the equipment from the time, we start this 

process, would not have changed. On other words, if you add equation 1 and 2, d by d t 

of n a plus n b; the right hand side should go to 0. That is the requirement of problem 

statement, because pressure is constant; temperature is constant; volume is constant. 

Therefore, we have the right hand side is 0. Therefore, if you add the left hand side F a 

of; it is a function of time, plus r a, plus r b, multiplied by v become 0. Therefore, F a of 



time, F a 0 at any time t, t equal to minus of r a, plus r b, times v. On other words, the 

material balance taking into account, the fact that gas law gives us the condition that d by 

d t of n a plus n b is 0, gives us a result, which tells us how we should regulate this 

process to be able to achieve constancy of pressure, which says, we must regulate the 

flow of F a 0, so that it becomes always equal to minus of r a plus r b times v. So, this is 

the condition that we will impose on the control system that will regulate the flow of 

component A into the system. 
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Once we know this, the rest is fairly, straight forward. Let us just look at all that, once 

again. Now, what we have said? We have said that the material balance tells us that we 

must regulate F a 0, coming into the equipment as minus of r a, plus r b times v. We also 

know from the statement of a stoichiometry that the rate at which, chemical reaction 

occurs r a by minus 2, must be equal to r b by plus 1, because A is reacting; B is getting 

formed, and as a result, we should have the rate of formation of B, equal to minus of r a 

by 2, follows by from the fact that stoichiometry tells us that A equal to half of B; it 

follows from that. That means, if you can say, we can substitute this result that r b is 

minus of r a by 2 in our equation 3 here, so that, now we get F a 0 of t equal to minus of r 

a, and then r b is minus r a by 2; I will just call this as equation 4. So, you get r b as 

minus of r a by 2. So, that F a 0 of t becomes minus of r a by 2, multiplied by v. This is 

clear. Notice here, that r a is minus of k ca square, is already given in the problem 

statement, which is what is mentioned here where, r a is minus of k ca square. 



Now, we can substitute for r a here.  

So, that now we get the rate at which, the material is entering the equipment, F a 0 of t; 

how it must change its time is now given, which is r a which is k times ca square v, 

divided by 2 minus; there are two minus signs here. So, that now, we get F a 0, which is 

the function of time, must be k times C a squared by 2 times v. On other words, what is 

being said in the problem statement is that we must adjust F a 0 of t, so that, it is always 

equal to k times C a squared by v, C a squared by 2 v. So, we must adjust F a 0 of t, so 

that, it satisfies this equality always. This is the control system that we must implement. 

Having said this, now, the rest is even, fairly straight forward. Now, what does it mean? 

It means that if you look at the material balance for component A, What is the material 

balance for component A; input, output, generation equal to accumulation.  
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There is no output, because the equipment is closed. There is nothing coming out of the 

equipment now. So, this valve is closed. So, whatever comes in, it can only accumulate. 

Therefore, we have output is 0. So, input F a zero of t is already shown in the previous 

description as v times k Ca squared by 2, and r a is what; k C a square. This also, we 

know, because r a is given as k C a squared in the problem statement, with a minus sign. 

So, we have F a 0 of t, which is v times k C a squared by 2 and r a is minus of k C a 

squared by two times v. So, that we get d by d t of n a is minus of k C a squared by 2, 

multiplied by v. So, what we have been able to do by utilizing the material balance in the 



problem statement is to show that the d by d t of n a is now, equal to k times C a square v 

by 2. 
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Now, having said this, we can go forward and carry out the integration. Now, left hand 

side is minus k C a squared v by 2. The right hand side n a is by definition, n a, you 

know of this; n a is always v times C a and v is constant. Therefore, v can come out of 

the derivative which cancels off. So, that we get now that the differential equation, which 

governs the variation of C a with time inside the equipment is given by minus of k C a 

squared by 2, equal to d by d t of C a, which on integration, gives us the result 1 by C a 

minus of 1 by C a, equal to k t by 2. So, what we are saying now, is that we are now in a 

position to tell how long we must run the process. So, that we get concentration of C a as 

might be specified in the problem. What is specified in the problem? What is specified in 

the problem is the following. 
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Problem statement says that; let me draw it once again; it says this is closed; we want 

this y b here, to be equal to 0.1. This is what it says. Problem statement says that how 

long does it take for the contents of this equipment to reach y b equal to 0.9 or y a equal 

to; let me write this here; we want y b equal to 0.9. Now, this one point, we must 

remember is that at the instant of time when we close this valve, the processes running at 

steady state at that time composition of A and B; I have written at C a i and C b i; the 

compositional A and B at the instant when we close the valve, were the values 

corresponding to the steady state, achieved corresponding to x equal to 0.5 in the first 

part of the problem. On other words, at the time when we close these valves, so that, it 

ran as a semi batch operation; C a i and C b i was a steady state values that we have 

achieved in part 1 of the problem. We have already found that values to be 0.0366 gram 

moles per liter and C b as 0.018 gram moles per liter. So, that C a plus C b i, at the time 

we close the valve, was 0.0544 gram moles per liter.  

Now, we have also said when we looked at the material balance, that p equal to constant; 

t equal to constant; volume equal to constant, and therefore, the total number of moles 

cannot change. Therefore, the concentration inside this equipment, C a i plus C b i must 

always be equal to C a plus C b, because that is the statement of the problem. On other 

words, what we are saying is that C a i plus C b i, which is 0.0544 when we close this 

valve, that total cannot change as this reaction proceeds, because that is the problem 

statement. So, what we are saying now, therefore, is that if you want y b equal to 0.9 or y 



a equal to 0.1, C a by C a plus C b is 0.1 where, C a plus C b is specified as 0.0544. On 

other words, what we are saying is that the value of C a at which we want to stop the 

process, is given by this number; C a must stop at 0.00544.  
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We started at C a i as 0.0366. We want to stop at 0.00544. On other words, C a, we want 

the time required to reach y b equal to 0.9 or y a equal to 0.1; we must substitute C a 

value of 0.00544 and C a i value of 0.0366. That will be the time that is required to reach 

y b equal to 0.9. If you put all these numbers, you will find that the time required to 

reach y b equal to 0.9 is 5.2 minutes. On other words, this whole exercise that we have 

tried to illustrate the use of design equations is essentially, tell how we can use the design 

equations for unsteady state process, like a stirred tank, to understand how a semi batch 

process can be understood, can be modeled, can be regulated, depending upon the 

statements of the process or depending on the requirements of the process we are dealing 

with. 



(Refer Slide Time: 29:08) 

 

The third exercise, we want to look at is the following that you have a chemical reactor. 

Now, the output goes to a condenser, and then you have the reaction taking place is A 

plus B going to C plus D. D is volatile, and the reaction is minus of k to C a and C b. 

You have a batch, starting with n a 0 and n b 0. So, this is the exercise in front of us. You 

have a reaction A plus B going to C plus D and the product D is volatile. Therefore, we 

are able to boil it off, and then condense it. Now, the question in front of us is how the 

volume of fluid in this equipment will change with time. Of course, this is relevant event 

in a commercial practical situation, because if you are having this in a practical situation, 

you will have to find out, I mean, what is the volume that is left unreacted, so that, you 

know, you can start the next batch. See, you must you know whether, it is to what extent, 

the fluids have been consumed. So, this has got very practical significance. The data 

given is N a 0 equal to 1 kilo mole; N b 0 is given as 1 kilo mole. Then, density is given 

as 20 kilo mole per cubic meter; this is for the fluid. C a 0 is given as 10 kilo mole per 

cubic meter and C b 0 is also given as 10 kilo mole per cubic meter. The problem 

statement is that you have a batch equipment in which, you have N a 0 moles of A and N 

b 0 moles of B, and then the fluid density mixture is given as 20 kilo moles per cubic 

meter; C a 0 and C b 0s are given and this reaction, A plus B going to C plus D, and the 

rate function is minus of k C a C b; second order reaction. 
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Question is what is the volume of fluid left in the equipment, after a given extent of 

time? Let us see how to understand this. Our stoichiometry is what; N a equal to N a 0 

times 1 minus of the x; we know this. N b is equal to N b 0 times N a 0 x; we know this. 

N c is N c 0, which is plus N a 0 x and N d is N d 0 plus N a 0 x; I have canceled this off, 

because it is not there, initially. Now, if you write a material balance for A, what do we 

get? Input and, sorry, I am writing material balance for D, sorry, not D. There is no input 

of D here. Output, you notice here is that this D, is going out here; this D is coming out 

here. So, F d plus R d times v equal to 0. Why is it 0? It is 0, because N d does not 

accumulate. What is the question? Question, we are having in front of us is that as the 

reaction occurs, the D formed being volatile; it is rapidly removed. Therefore, there is no 

accumulation of D in the equipment. That is why we have this input. This is input; this is 

output; this is generation of component D; this is accumulation of component D, all 

right. So, there is no input. What is R d? R d by definition, what we have said is that R d 

is k C a C b times v. On other words, R d is same as, I mean, we can even say this R d is 

same as R a V with the minus sign; is it all right, because whatever is the; what should I 

say; whatever is with the minus sign, whatever is the D a formed; a consumed is in D 

formed, all right. 
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Essentially, what we are saying is suppose, you write a material balance for A. We get d 

N a by d t; there is no input, no output; there must be equal to R a V. Now, N a is what? 

N a 0 times d x d t; that we know, equal to minus of R a V; this also we know. N a 0 d x 

d t equal to what is this R d; we know from our stoichiometry, R a by minus 1 is equal to 

R d by plus 1. So, R a R d; this is minus R a V is equal to plus R d. So, this is simply 

equal to R d V; is that clear? What we are saying? What we are saying is that, F d, you 

can see here; no need to write this; F d equal to R d V.  
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So, this actually, gives you; let me just write it here; F d equal to R d V; this will come 

from the material balance for D. Now, R a equal to minus of R d; therefore, this is equal 

to F d. That is what we are saying. So, what we are saying is that this is equal to F d. 

Now, we also know the rate at which, volume must be equal to F d. Whatever is the 

change in mass of the fluid in the equipment, must be equal to the rate of change of F d; 

is it clear; where, royal refers to molar density of the mixture and so on. So, we can look 

at these two equations. You can see this equation and this equation. We can see here 

since, they are both equal to F d; therefore, N a 0 d x d t must be equal to d by d t. Let me 

write this for you, and then let us look at it, once again. So, what we are saying is that N 

a 0 d x d t; please note here; N a 0 d x d t equal to F d; d by d t of v l is also equal to F d. 

So, you notice here; d by d t of v l; here, v l is, this is decreasing; therefore, there must be 

a minus sign here. That is why I put a minus sign here. So, what do we get?  
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So, what we get here is that N a zero d x d t must be equal to minus of d by d t of rho l 

times V. That is equal to minus of rho l times d V d t, equal to N a 0 d x d t or we can 

write N a 0, sorry, d V d x equal to N a 0, divided by rho l with the minus sign; is that 

right? What we are saying; that means, rate at which, volume changes with respect to 

extent of reaction, is a N a 0 by rho l. So, I have written this as; we can integrate this and 

so on. So, let me integrate this. I will get V equal to V 0 minus of N a 0 x, divided by rho 

l. I will write this as V 0 minus of C a 0 x by rho l; is it all right? C a 0 x by into V; N a 0 

is C a 0 times v, x by rho l. So, I can write V 0. So, I will just write this here. So, V 0 



multiplied by 1 minus of epsilon l times x. What is epsilon l? Epsilon l equal to C a 0 by 

rho l; this is what we are saying. 

What we achieved? What we have achieved is that we have an instance of a chemical 

reaction. Let me just go back to this chemical reaction that we have.  
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We have this chemical reaction, A plus B goes to C plus D; D is volatile. So, that as this 

reaction proceeds, the D being volatile, it can be boiled off; therefore, the volume keeps 

on decreasing, because D is going away. So, that is a question that we have in front of us.  
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We have shown from our material balance that N a 0 d x d t is F d and similarly, d by d t 

V is also minus of F d; therefore, we can equate these two. That is what we have done 

and found that the rate at the volume change is related to conversion like this.  
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So, V 0 and conversion are related like this. So, this is the relationship we will keep with 

us. Let me write that once again. We say that V equal to V 0 minus, sorry, V 0, 1 minus 

epsilon l by x, all right. 
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Now, let us go back to our equations, N a 0 times d x d t; see, this is our equation, which 

is minus of k C a times C b times V. Now, this V, we can substitute from here. That was 

the idea. So, we have N a 0 d x d t, equal to minus of k C a. What is C a, which is N a by 

V and what is C b, is N b by V, and this is V are equal to minus of k. N a 0, 1 minus of x; 

they are both equal; therefore, I will put like this. It is V, which is V 0 times 1 minus of 

epsilon l x. So, it is equal to; one N a 0 gets canceled off. So, it is k C a 0, 1 minus of x 

whole square, divided by 1 minus of epsilon l x, equal to d x and d t; is that clear? We 

can solve this now. It is a fairly simple thing to solve this.  
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We have now, our equation is d x d t, equal to minus, sorry, plus k both sides, sorry, N a 

0; this will be a minus sign here; will be a minus here; I forgot the minus sign here, the 

minus sign here. So, d x d t becomes k C a 0, 1 minus of x whole square, divided by 1 

minus of epsilon l x. So, we can solve this, and then the solution is fairly, simple; k 0 t 

equal to 1 plus x, divided by 1 minus of x, plus epsilon l, l in 1 minus of x; all right. 

Now, basically, what it means is that once you are given what is the m extent to which, 

you want to remove; once x is given, you can find t or when t is given, x can be found 

out.  

Basically, this is the equation, which determines what happens to the process, and V 

equal to V 0 into 1 minus of epsilon l times x. So, all the data is given; therefore, you can 

calculate what is the, I mean, basically, x, t, V; there are three things here. So, if you 



want to calculate, if two are given, the third can be found out. So, essentially, depending 

upon what is specified in the exercise, in this particular exercise, what is specified is 80 

percent; x is given as. If you put x equal to 0.8, you can find t. Once you put x equal to 

0.8, you can find V. Here, for x equal to 0.8, you will find t equal to; I have found t equal 

to 3.09 hours and V equal to 0.04 cubic meters. So, what we have tried to do in this 

exercise is the following; that we have taken three examples of unsteady processes. First 

exercise was to find out how long it will take for a steady state to be achieved to a CSTR. 

Second exercise, we took is look at the chemical reaction in which, we want to hold 

volume pressure constant over a period of time. We said how it can be done. Third 

exercise is that we are looking at process in which, continuously removing the liquid and 

how long it takes for you to reach a certain extent of reaction and so on. All three cases, 

essentially, we set up the equations and found out how the different things are related.  

Thank you 


