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Lecture 50 : Synaptic Normalization
Welcome. So we have been discussing long term plasticity implementation in

computational models using different kinds of rules of update of synaptic weights
or actually we have been talking about how the change in synaptic weights take
place with using the derivative of the elements of the weight matrix with respect
to time and that is some function of the input activity u which is multiple num-
ber of inputs and the single output variable v. And so we have these rules that
we have considered are the correlation based rule, the covariance based rule and
the BCM learning rule. And so we saw that the BCM learning rule overcomes
most of the I mean rather all the problems that have that are associated with the
Hebbian based correlation based learning rule or covariance based learning rule
and appears to work very well. However there is one issue that comes in is that
the weight updates stability that is the stability of the weight from or the length of
the weight not growing unbounded that is indirectly controlled through the output
activity. So in other forms there are normalization models, normalization based
rules that actually are constrained the weights directly and so we have two kinds
of normalization based models one is the subtractive normalization and the other
is multiplicative or in fact it is actually divisive multiplicative or divisive normal-
ization.

And this is also called Ojah’s rule. However we must also say that these rules
that we will talk about the subtractive and multiplicative rules they are not totally
biologically grounded as we will see the subtractive rule somehow requires in-
formation from all the synapses to each of the synapses which is maybe possible
but there is very I mean no evidence in support of that. And similarly the mul-
tiplicative normalization is more a mathematical way to normalize it rather than
how actual sort of normalization works in terms of homeostatic plasticity where
the overall weight is overall response activity or output activity is over long pe-
riods of time is that average is maintained. However so since these are used in a
number of computational models that include plasticity and these are some of the
basic rules we will be covering them in this course in particularly in this lecture.

So what do we mean by the subtractive learning rule essentially we introduce
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this idea that our the sum of our weights that is W1 plus W2 up to our WNB where
there are WNB weights this is constrained to be constant. So in other words if we
define a vector N that is all unit all elements are unity then N ·W is what this sum
is the dot product of N and W . So our learning rule that is our τW dW

dT
is given

by our V U as we always have and that restriction is brought in by V NQ times N
divided or N vector N times NB. So this is the correlation based increasing apart
that is the weights would be increasing so that is countered by this particular term
which is based on again the both the output activity and the input activity and it is
it is made to be of this particular form. So that ultimately our sum of W this NW
does not change.

So for the N ·W for not changing the derivative of N ·W must be 0 and so let
us see what we have so D(N ·W ) which is the this is the sum of all the weights
this will we require this to be constant and that is why that additional term has
been introduced and so this is nothing but the N vector dot dW

dT
and our dW

dT
from

our previous expression we have dW
dT

equals V sorry we have V U minus V times
N · U times N divided by NB. So now we simply plug this in into this term here
dW
dT

and so we have N and dot product with V U minus V N · U and N divided by
NB. So now if we take the N in here what we will get is V times N · U in the
first term. So this becomes V N · U because V is a scalar we can take it out and
N is multiplied by U and we also have the same V N · U here and we can plug in
the N inside times N ·N divided by NB and so if we take V N · U as a factor out
what we get is 1−N ·N divided by NB. So what is our D(N ·W ) that is the sum
of the weights coming out to be here as you see if we multiply N with N N · N
we are essentially having 1 1 1 this vector multiplied by 1 1 1 this vector.

So it is basically sum of NB ones because this number of elements is NB
and here also number of elements is NB so this becomes 1 so sorry this becomes
NB. So what we have is if this becomes NB then this whole term goes to 0 and
so what we have is our N · W is a constant. So there cannot be any unbounded
growth here and we still have a competition among the synapses that is when one
keeps on increasing or few of them keep on increasing the others are bound to
reduce and go down to keep the overall sum of weights constant. And while this
is when thinking of just the mathematical treatment this is very suitable kind of
rule there is hardly much evidence to justify this clearly although this rule can
be used to explain certain phenomena in networks but this again brings up the
issue of the biological relevance and how we want to implement certain things.
So if the objective is to solve a particular problem we and if this rule helps us to
solve that problem that is fine but if the objective is rather to understand and build
on the rules that are biologically based and see how they are different then such
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a rule actually would not be that much useful because while we do understand
the correlation based increase in weights which is sort of the Hebbian rule and
we have discussed the biological relevance of that as well this subtraction this
normalization subtractive normalization is not entirely physically true because as
you see the for weights to decrease or increase the information about all the other
weights on the neuron is required at a particular synapse.

So that becomes a difficult proposition while it is it may be possible through
intracellular signaling in some particular way or through even activity in some
particular way but so far there is not much evidence in favor of this rule being true
in real neuron. So in the next rule what we will be studying is as we have said the
multiplicative learning rule or the multiplicative normalization in this case again
so there we had a subtractive term that is subtracted here also we will have a term
that is subtracted but it will be proportional to the weight itself and so what is this
is the Ojah’s rule what we again have is τW dW

dT
and this is again we have our term

vu and then we have our αv2 and this term multiplication by w. So since we the
update is proportional to this weight w this is what we call for this is what we
mean by the multiplicative normalization the normalization that is brought in by a
factor of the weight itself. So why is this I mean what does it achieve in terms of
the normalization so here if we look at the norm of the weight so again if we look
at our norm the length of the vector and we look at the derivative of it then and
multiply it by τW then what we have again is τ w times 2w and vu minus αv2w.
So τW can be dropped because this is this is our τW into dW

dT
so then what we have

here is twice our v into w · u minus αv2 into w ·w which is simply the norm of w.
So what is our w · u w · u again is our v as we have always had so we have 2

times v2 minus αv2 norm of w2. So we have twice v2 times 1 − αw2 or actually
we can say twice v2 by α sorry α 1 − α − w norm square. So what we have
the derivative of the norm norm of the weight that is the Euclidean here in this
case Euclidean length of the weight vector that is the dynamics of it that is the
derivative of it in steady state that is when there will be no change finally it will
always relax to 1/α because ultimately when the system stops that is when the
when we reach no change in weights the norm of dW

dT
being 0 the our w norm will

approach 1/α and so essentially that introduces a constraint on the length of the
vector and so here also we see that there is no unconstrained growth of the weights
because ultimately the w reaches a fixed value. So both these normalization rules
are useful for many computational models however in terms of real neurons they
have many elements that are not really supported by evidence so far. So for us the
main rule turns out to be essentially the STDP based learning rule and that we will
say will be representing by in this case τW then dW

dT
and so remember if we have
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a learning window that is based on let us say this particular learning rule that we
have let us say this versus this let us say this is any function H(τ) on this axis.

So this is the pre minus post or the timing difference. So if we assume that over
time the all of them all of the spike timing is actually getting implemented all the
spike time differences are actually getting implemented and there is a continuous
spiking going on in terms of the probability of spiking occurring and so lot of the
ensemble average then these dW

dT
can be represented by a sum of 0 to infinity H(τ)

times v(t) and u(t − τ) this term we have dτ and plus H(−τ)v(t − τ)u(t + τ).
So essentially here this particular term is all the LTP that is occurring and this is
the contribution of LTD. So here you see that our previous v is correlated with
the current u and weighted by the H in the backward direction in the negative
axis because we are integrating over 0 to infinity and here we are correlating v(t)
and u(t− τ) where is that is the past u is being correlated with the current output
which is 2 and is weighted by this H(τ) depending on τ this correlation will be
changing and this particular term is for the right hand side of the learning rule. So
here it is the change in weight that we had discussed.

So the LTP and LTD are both included and the difference from what we had
seen earlier in terms of the experimental observation of spike time independent
plasticity we have changed it in the sense that we are now basing it on average
rate responses assuming that there is a probability of spiking associated with that
output rate and so we can indeed set up this model to explain the change in weight
based on the spike timing dependent plasticity. And now with variety of H(τ)s
or even various depending on how the different systems different neurons and
synapses work we can modify the use in a manner that is based on observation
or even the reads that is based on observation like we were talking about bursting
activity and so on. We can have a general sort of model for change or update of
weights. So with these discussions of synaptic weight update implementations we
come to the conclusion of the modeling of long term plasticity and next we will be
talking about how these are implemented in networks what are the consequences
of both short term and long term plasticity ah in our coming lectures. Thank you.
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