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Lecture 36: Statistical Methods in Discrimination
Welcome. So, we will switch gears a little bit here and go on to some of

the statistical approaches that are there in terms of decoding response decoding
the value of a stimulus or what the stimulus was based on responses. And so
we will treat this in the case of so we have been talking about discrimination
and for the single neuron case as well as multiple neuron cases. However, we
have been treating stimuli as discrete elements that is mostly that we have a set
of stimuli 1 to capital N and then we are we created let us say the confusion
matrix or we created how I mean based on spike train distances we also did look
at population based approaches we looked at KL distance and so on. However,
other than decoding a stimulus over time let us say when we talked about S(t) and
basically finding out estimating S(t) from the response over time we treated the
stimuli as nonparametric. Now and in these cases where we have multiple stimuli
it essentially means that the stimuli are very different from each other even if they
are parametric they are very different from each other.

However, we may have situations where we may need to deal with very fine
changes in the stimulus and these are applicable to the case of parametric stimuli
mainly whatever we are going to discuss in these in this part of the course. So let
us say that we have a stimulus S which is a particular value a scalar or rather a
variable which takes on one value for now and this may be changing only slightly
to let us say S plus delta S and by looking at various features of the response for
such small changes in stimuli we will be able to see how well the responses or that
neuron encodes the parameter S. So that means if for a small change there is a large
change in the response then it would mean that there is a high fidelity of encoding
the stimulus S. So in the case that we will be studying that okay for a stimulus we
have a set of responses and from the responses we are going to estimate the stimuli
or the stimulus S estimate that particular value of the parameter of the stimulus.

So think of S as a parameter here and response is the random variable based
on which or the observations based on which we are going to make an estimate
about S. So an important factor here or important term here is what we call the
score which is nothing but the derivative of log of response given a stimulus S with
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respect to S. So the partial derivative I am sorry log of probability of response to
the stimulus S with respect to S. So essentially this term here is what we call the
log likelihood that is what is the likelihood of the response being some R given
a stimulus logarithm of that and how sensitive is that likelihood to changes in S
or the stimulus. So the more the sensitivity the more better will be the fidelity of
encoding by the response and so based on this we will based on this idea we will
go further forward and with this score will come back up again in our discussions.

So we will be dealing with this probability distribution P R given S that is
what an experimenter gets so this is results of experiments this is our observations
or data or observations or data. So with multiple repetitions we get a distribution
of R for a given stimulus S or stimulus parameter S. So let us continue with this
idea in a slightly different manner. So we have R given S that is given a particular
stimulus with multiple repetitions we are getting a probability distribution of R
given S. From that we are estimating S estimate and that let us say is on average
for multiple when we if we were to able to do this multiple number of times then
let us say that it is mean it has a mean that is same as the true value of the parameter
S.

Now in very different in multiple different cases if with the same data if we
estimate multiple times we will have different values of estimates if we were to
do the experiment again and again in different cases we may have the estimates
to be spread around this true value of S. Now earlier we were talking about the
score which is our log of P of r given S the derivative of this with respect to S.
This score says that for a particular distribution of response given a stimulus how
the log likelihood of the response changes with small changes in the stimulus that
is how sensitive the response is to changes in stimuli. If we have larger changes
that would mean that it is coding in a better way. However here we will change
the idea slightly and talk about it in a different manner in the sense that we will
say that any estimator S estimate any estimator has an associated variance let us
call that sigma square sorry let us call that sigma2 estimate that is the variance of
the estimator.

Let us now we are considering unbiased estimator and so there is variability
in the estimates in the sense that we can have an based on the data we can have an
estimator that has a distribution of the estimates for multiple different experiments
that is narrow very narrow very close to the true value of S. We can also have an
estimator whose variance is high with a large spread of the estimates around the
true value S which means that the one that is narrow that is a better estimator that
is the variance is low. So, always an estimator we will be trying that the estimator
has low variance that is it is as close as possible to the true value S for different
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cases different experiments that is how we would like the things to be we would
not want because we can be anywhere on this line in within this yellow range for
a given experiment is what we are saying and so the chances of being wrong is
high. Similarly if we have the many the variance of the estimator to be low the
chances of being very much away is extremely low. So, this way we can define
the fidelity of coding of the stimulus based on the responses.

So, this whole thing is being determined from P r given S this P r given S.
So, there is a minimum variance that is associated with an estimator that is given
by the Cramer Rao bound that is this sigma2 estimate that is the variance in the
estimator is greater than equal to 1 over f S. So, this is also dependent on S that
is the Fisher information this is called the Fisher information. So, the Fisher
information is actually we can let us put a scalar here in any case just. So, if we
have so the Fisher information is given as the expectation of the square of the
score that is del log P r given S del S squared.

So, this expectation is obviously on r that the response distribution. Alterna-
tively this is an exercise that you can do this can also be defined as expectation
of the negative second partial derivative of log P r given S del S. So, what we are
saying here that if this f S is low Fisher information is low that is based on the
data that we have collected that is P r given S we estimate the Fisher information
f S for that particular stimulus at that particular location at that for that parameter.
What the data is telling us in that case if f S is low is that the minimum variance
of the estimator that we can reach or the best case scenario that can be reached
based on the data is quite high variation or high variance. So, in other words there
will be chances of it being like the yellow distribution the different estimates in if
we were to repeat the experiment many many times we will get a large variation.

So, what with the low Fisher information what we are seeing is that the best
possible scenario is going to be poorer than the case where the Fisher information
is high that if the Fisher information is high then the minimum variance of an
unbiased estimator this sigma2 estimate that can be reached is much lower than
the case where the Fisher information is low. So, based on the Fisher information
then we can conclude about how well the response encodes the stimulus or in
other words if we are trying to estimate the stimulus from the response how well
we can estimate that is determined by the Fisher information which is as we have
shown is this expectation of the square of the score. So, as we will see as you can
think about it a little more. So, cases where we have the response variability to
be low as well as changes of the responses with stimulus is high this combination
is going to produce the highest Fisher information. If the variance is constant
throughout the stimulus change space then it is the change in response with the
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stimulus that is the most important thing.
If the response change is moderate or I mean is more or less constant with the

stimulus change then where we have the least variability in the responses for that
stimulus that is where we will have the highest fidelity of coding of that particular
stimulus parameter. So, with this we will conclude our first discussion about
statistical approaches in estimating stimuli from responses. We will continue this
discussion in the next section. Thank you.
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