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Welcome. So we in the last week we had concluded with the idea of the spike

triggered average and we showed that the spike triggered average is proportional
to the estimate of the cross correlation between the output spike train produced
by the stimulus X(t) where X(t) is Gaussian white noise stimulus let us say and
our P (t) is the observed spike train. So just a recap of our model again which
is our X(t) we have our H(t) that we want to find of this LTI system and then
we are getting Y (t) a proxy sort of to the membrane potential and then we have a
static nonlinearity which can be arbitrary that produces the driving function λ(t)
for the point process generator which is producing the P (t) which is summation
our δ(t − ti) and these ti’s are our observations over the period capital T that is
over that period we are observing NT spikes and the spikes are occurring at time
points ti. So the few results that we have so far is that our RY X(τ) is proportional
to H(τ) or the impulse response itself that is this LTI systems definition and that
is true in the case of X(t) is a white Gaussian noise process and it has a variance
σ2 then we know what the constant of this proportionality is. We also showed
that our RPX if we cross correlate or estimate a cross correlation of RPX which
is R̂PX then that is proportional to what we call the spike triggered average which
is nothing but X(ti − τ) and this is summing over all the spikes and to capital NT

and this is nothing but the STA or spike triggered average. So now we are left
with the task of connecting from P to X then λ to X then Y to X .

So we will go over these steps sequentially but to make the first step we had
introduced the idea that we can convert the P (t) from the spike train observed
at the spikes observed at time points ti and we have another process Q which is
binned in small enough bin size δ then we said that our if we cross correlate RPX

that is if we cross correlate p and x get the cross correlation function RPX(τ) this
is approximately RQX(τ). So the the Q is a variable or the process actually where
which takes on values 0 or 1 and our δ is small enough such that probability of
the ith bin Qi equal to 1 is nothing but δ times λ(iδ) position that is almost the
instantaneous firing rate there multiplied by the tiny window. So now we know
this R̂PX(τ) estimate to be the spike triggered average that is its proportional to
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the spike triggered average which means that our RQX is also proportional to the
spike triggered average. So now can we compute RQX(τ) let us say we now need
to compute RQX(τ) so that means it is simply the so again since Q is observations
and not we do not have infinite observations we will only have an estimate of RQX

then RQX(τ) is ideally the expectation of Q(iδ) and x(iδ − τ) this expectation is
what we need to compute.

So if we start with the expectation of Q(iδ) we have so that can be written as
if now we have essentially capital M bins and there are this is going to be this
needs to be summed over all the bins that is i = 1 to capital M where if this is
the total time t our t is nothing but Mδ and so the average it is replaced by the
average for all the bins this expectation for each of the bins. So now if we if we
compute this expectation we can do it in this particular way where we introduce
a dummy variable if we consider let us say only the inside of the summation we
introduce a dummy variable a and let us compute the expectation under a of this
expectation E[Q(iδ) · x(iδ − τ)|x(iδ − τ) = a]. So this expectation can simply
be written as this from basic probability and so our x(iδ − τ) can be replaced by
a so what we have here is Ea and we have expectation of Q(iδ) · a so that is we
have a outside and expectation of Q(iδ) given that ix(iδ − τ) = a. So essentially
we are introducing this a and then integrating it out by getting this expectation.
So now what is the expectation of Q(iδ) Q(iδ) that is independent of a now that
is Q we know that the probability of Q(iδ) = 1 is δλ(iδ) and so we can say that
otherwise it is 0 so we can simply say that it is Ea and a times if we now have
this x compute this expectation it turns out to be 1 times δλ(iδ) so 1 times δλ(iδ)
given x(iδ − τ) = a.

So I hope you appreciate why we introduced this a that is to be able to sep-
arate out this x and compute this expectation and now we go back the same step
by removing the a and that turns out to be simply our expectation of and the δ can
come out δ times λ(iδ) · x(iδ − τ). So the forward step that we did here we are
simply doing the reverse of that step here and now what we are left with is δ and
expectation of λ(iδ) · x(iδ − τ). Now this is a familiar expression for us this is
simply our RλX so if we now write this is simply δ times R̂λX(τ). So we have now
an additional result from here RPX RλX and that RPX is approximately equal to
R̂QX(τ) and now we are saying that this cross correlation between q and x that
is the input and q is proportional to the cross correlation between λ and x that
is essentially what we show here. So you can see that we are gradually coming
towards RY X so what we have so far is that our spike triggered average is propor-
tional to our R I mean the spike triggered average is RPX which is proportional
to RQX which is proportional to RλX and we know that our RY X is proportional
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to our H(τ) that is what we are after.
So now we are separated by this nonlinearity this static nonlinearity which

can be arbitrary and so if somehow we can show that this RλX is proportional to
this RY X let us say if we could somehow show this we do not we have not done
it yet. If we somehow show this then we can now say we would be able to say
that our impulse response of the LTI that we are trying to obtain is simply the
simply a scaled version of the spike triggered average of the stimulus. So this
is the remaining disconnect in concluding that and so for that we need a special
kind of theorem which is what which is called prices theorem. So that we will just
assume this and show that if we have partial derivative of the expectation of g(x, y)
∂ρn will tell all the terms shown that is the same as expectation of ∂2n∂xn∂yn of
g(x, y). So here x and y are jointly Gaussian zero mean g(x, y) is any function
that is differentiable and well behaved and ρ is the covariance of x and y which is
nothing but RY X − µx · µy.

So in our case where we have this x our h(t) and y and then we have our static
nonlinearity and then λ(t) our λ let us say x(t) y(t) λ(t) then we are saying that
our stimulus by stimulus design we can take x(t) to be white Gaussian noise that
we can play such a stimulus to the neuron depending on the system it will be a
visual white noise or auditory white noise and so on. So in if this is the case then
x and y because this is an LTI x and y turn out to be jointly Gaussian and our µx

is 0 this is we have 0 mean white Gaussian noise. So this Rxy RY X and minus
µxy simply the ρ becomes RY X . So our ρ the covariance is nothing but RY X .
So I am dropping the τ here to for simplicity of expressing the terms here and as
we have said the nonlinearity let us say this y(t) is going into the input with this
nonlinearity producing this λ(t) which can be represented simply like this that λ
as a function of y that is λ as a function of y(t) because it is a static nonlinearity
this λ is simply I mean the output λ(t) is simply λ(y(t)) and since we said that
this nonlinearity can be arbitrary then we can of course write out this nonlinearity
as a polynomial which is as an infinite order polynomial that is coefficient akyk

where k goes from 0 to infinity.
So we have our λ(y) given so these are all the terms that are given so far and

we are assuming the nonlinearity to be an arbitrary nonlinearity here we know
now that our ρ is simply RY X and so now what we need is to choose g(x, y) that
will allow us to show the connection between λx and yx RλX and RY X . So if we
if we take this g(x, y) to be simply x times λ(y) or xλ then and n = 1 then the left
hand side of this equation here of the prices theorem this is let us say equation a
that turns out to be ∆∂ρ of the expectation of xλ so and that is simply ∆∂RλX∂ρ
∂RλX∂ρ so that means it is and that is the same as ∂RλX∂RY X . So R if ∂RλX and
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∂RY X I mean ∂RλX∂RY X is a constant that is the RλX as a derivative of RλX with
respect to RY X if that is a constant that would mean that RY X is proportional to
RλX which is exactly what we intended to go after in order to complete this chain
that is if we that is derivative of RλX with respect to RY X is constant that means
they have a linear relationship that is they are proportional. So here if we now
go forward with this assumption of g(x, y) to be xλ(y) and look at the right hand
side so the right hand side is expectation of we said that ∂2ng(x, y)∂xn∂yn and
our g(x, y) is λx and our λ is nothing but summation aky

k that is we have equal
to expectation of now n is 1 so ∂2 and we have here essentially x times

∑∞
k=1 aky

k

∂x∂yn is 1 as we had done in the previous on the left hand side. So now if we do
this partial derivatives so what we will be left with is simply expectation of ak I
am sorry expectation of with the derivative with respect to x this is gone and now
with the derivative with respect to y will be left with

∑∞
k=1 aky

k−1 and we can take
the summation out that is

∑∞
k=1 expectation at ak times expectation of yk−1 and we

know that our xy is jointly Gaussian and x is Gaussian so y is also Gaussian and so
this is simply the k− 1th central moment of a Gaussian and so it is a constant. So
the sum of ak times a constant can be shown it converges and so this turns out to
be a constant which is what we intended to have intended or we required to have to
complete the change. So what finally we have is our λx ∂rY X is a constant which
means that our λx is proportional to rY X and so we are done in the sense that
if we get the spike triggered average then that spike triggered average is simply
proportional to the H(τ) that we are after. So this connection is made and so we
are done showing that indeed the spike triggered average can be used to estimate
what our H(t) should be. Now that we have something proportional to the impulse
response using that we can find out empirically what this nonlinearity would be
that is given the set of data of x(t) and H(t) with convolution with estimated
H(t) will get a number of y(t)’s and I mean we will get samples of y(t)’s and
use using the connection between y(t) and λ(t), λ(t) estimated from our p(t) we
can with repetitions of the stimulus we can find an empirical sort of function that
transforms y into λ.

So this whole idea can now be extended to different kind of forms where the
stimulus x(t) is multi-dimensional that this is a vector or the stimulus I mean
many different many dimensions. In the case of the auditory system let us say
we can have this x(t) to be simply the spectrogram or how the energy at different
frequencies is changing over time. So in that case the stimulus this becomes x
simply becomes a vector of elements for different frequencies and goes over time.
So that is if this axis is frequency and this is time we have at each time point we
have different frequencies and they have certain values that intensities for each
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of these frequencies and that is varying over time and we can design that to be
Gaussian white noise making them independent of frequency bins and time we
can then do the spike triggered averaging on the spectrogram itself that is a vector
random process here. Similarly when we talk of the visual system our x will be a
two-dimensional matrix or rather the pixel values in my entire field of view.

So it is instead of one vector like this it is going to be simply a matrix of
white noise image for all the pixels that is our x(t) and this is changing with
time. So I am basically each frame of image is coming successively and that
is our x(t) in each time instant and so we can similarly do the spike triggered
average for the visual system and get estimates of the impulse response. In this
case the impulse response is going to be as you can imagine a video that is a set
of frames of images over τ so that means it is a with the receptive field itself is a
video and in the spectrogram case the receptive field would be a two-dimensional
matrix where we have frequency on one axis and τ on the other axis just like
the spectrogram itself and so in the somatosensory system also you can extend
this similarly just like visual stimulus over certain patch of skin let us say we
can have pixelated values of pressure or whatever the mode of the stimulation is
and we with the Gaussian white noise assumption and the design of the stimulus
accordingly we can use spike triggered average for the somatosensory system as
well. So with the spike triggered average as we had earlier said the they are good
spike triggered average turns out to be good in the periphery like in the auditory
nerve in the retinal ganglion neurons RGN even in the LGN some neurons in V 1
like the simple cells it can be modeled well similarly from the auditory nerve in the
auditory system they are well modeled well predict the behavior of different types
of neurons in the cochlear nucleus that is the next stage in the cochlear nucleus
some neurons even in the inferior colliculus and so on. However as we go into the
primary auditory cortex and beyond and here also as we go beyond V 1 or even
the complex cells of V 1 we cannot use the spike triggered average to model their
behavior very accurately.

However as we had mentioned we can still linearize those systems over a
small parameter space and predict the behavior within there and maybe combine
it across different points in the parameter space to get a larger model. And finally
as we will later on see like in the auditory cortex and even in the higher order
visual cortices even though the spike triggered average is not a very good model
to predict responses of the neurons to new stimuli we will see that with behavior
certain learning the spike triggered average can change that is the receptive field
itself is changing due to some phenomena of learning or some perturbation to the
system and we will see that those although they are not good models they are

5



instructive in the sense of understanding and going after what mechanisms are
there behind those kind of plastic changes. So even in the higher stages the spike
triggered average is useful even though not as models but as other descriptions
of mechanisms that may be underlying. So that we have now gone across the
forward problem one aspect of the forward problem that is going from the stimulus
to the response. We will now in the next lecture try to understand the backward
process that is from the response to the stimulus and one particular aspect of it is
reconstructing the stimulus and basically try to see what is going on in the sense
of that what is producing these spikes.

So these are useful in brain computer interfaces and shown this kind of decod-
ing methodologies that is going backward from the spike train to the phenomena
that is causing the spike train. Thank you.
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