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Lecture 25 : Stimulus to Response mapping(Coding) - II
Welcome. We have been discussing how we can use linear time invariant

systems to model properties of neurons or the stimulus to response transformation
of neurons. We came up with a model or a series of steps which we describe as
the model for the neuron or in fact from the stimulus to the spike trains which
involves linear time invariant system followed by few other blocks. And so to
remind ourselves we have the stimulus as x(t). Then we said that we have an LTI
here which is as you know completely represented by its impulse response h(t)
that is if we have the system if x(t) is δ(t) then the output of the system so x(t)
and output of the system is y(t). In case of x(t) is equal to δ(t) y(t) is h(t) that is
the impulse response of the system and we said that h(t) is all we need to know
about the LTI system in order to be able to model the behavior or the output for
any given input.

And followed by this so if this is y(t) we said that y(t) is akin to the membrane
potential and so it passes through a static nonlinearity which can be of any type
but at least the most common type being that we have a threshold and then some
saturation which is usually modeled with a sigmoid like an activation function.
And we have said that this can be any arbitrary nonlinearity which we will see that
in the process of our determining h(t) it does not matter what kind of nonlinearity
this is. That is producing the instantaneous firing rate λ(t) which is the driving
function for the inhomogeneous Poisson process and what we are observing are
basically a point process being driven by the λ(t) and that is our P (t) which is a
series of impulses that is our P (t) is described as summation of δ(t− ti) where i
varies from 1 to capital Nt where T is the period over which we are observing the
spikes and that is the period over which more or less we have the stimulus X(t).
And we need to understand the behavior of this system and we said that all we
need to do is find out this h(t) and then we will be done once we have estimated
the h(t) if it is good we will be easily able to predict or find out what this nonlinear
function is and hence be able to model the system.

And so in order to do that let us think of simply a linear time invariant system
let us forget about the other two blocks here and let us say we consider only the
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first part of it where we have simply an LTI whose impulse response is h(t) we
have an input X(t) which is a random process and it is producing a output Y (t)
which is also a random process and we will assume the wide sense stationarity
and ergodicity in these processes to make things simpler. And I mean they are not
bad assumptions because given the kind of results we know that exist by using this
kind of modeling we find them to be very good in many cases as we have discussed
especially in the peripheral regions and slightly above but it gets difficult to use
these models as we go higher up in the hierarchy as we have discussed. So we
introduced the idea of the cross correlation function that is RY X(τ) we are saying
τ because we are assuming wide sense stationarity and we if we want to find out
what RY X(τ) is we essentially need to calculate the expectation of our Y (t + τ)
and X(t) this product. The expectation of this is the cross correlation function
where Y and X the points that we are considering at every instant are τ apart and
from here from this being an LTI linear time invariant system we also know that
our Y (t) can be written as the convolution of X(t) and h(t) or in other words
we have an integral over minus infinity to infinity our X(t − u)h(u)du. So we
have simply replaced the dummy variable tau in this case by u if you recollect
our definition of the convolution we had instead of u we had τ now we have a
different τ here and so we have to introduce a different variable name here which
we have taken to be u.

So we can use this y(t) based on the x(t) and h(t) and we can plug it in into
this y(t+τ) and so what is our y(t+τ) so if we can if we write it here our y(t+τ)
will turn out to be integral minus infinity to infinity we replace t by t + τ X(t +
τ)− u and h(u)du. So in a sense the cross correlation function RY X becomes the
expectation of we let us say we write the x(t) first and then the integral X(t+τ)−u
again X(t + τ) − u h(u) and du. So we can interchange the expectation and the
integration because the integration is over u so and it does not matter if we take the
x(t) in and the expectation in it can be since the expectation is a linear operator we
have the integral let us say integral is over u so let us write the differential first du
we have h(u) which is not part of the expectation and then we have the expectation
because h(u) is a constant in that sense expectation of X(t + τ) − u into X(t)
so we have simply interchange the expectation and the integral and we have taken
h(u) out of the expectation because it is constant function and so it is not a random
variable and so if we now look at this expectation it looks very familiar function
where if you look at this representation of RY X(τ) with expectation of Y (t + τ)
X(t) if we take X(t) in the if we take X(t + τ) − u instead of τ here and this is
X(t) this simply becomes RXX(τ − u) that is the auto correlation function of X
and the variable index is the argument is τ − u so this becomes integral duh(u)
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and RXX(τ − u) so now if you look at it again duh(u)RXX(τ − u) and compare
this with the convolution definition convolution equation we have again that h(u)
and X(t − u) instead of X(t − u) we have different function here which is a
function of τ and that is the auto correlation function τ in there so this is also a
convolution but it is only that this is a convolution between H(τ) and RXX(τ).
So what we show here is that in this kind of scenario where we have wide sense
stationarity and we have a random process as input and output is also a random
process of an LTI then the cross correlation function between the output and the
input is related to the auto correlation function of the input through the impulse
response just like the output of the system is connected to the input of the system
through the impulse response through a convolution here we see that even the
auto correlation or the cross correlation function is simply the convolution of the
auto correlation function that is the cross correlation of the input itself with itself
and the impulse response. So in a sense what we have here is that our Ryx(τ) is
nothing but H(τ) convolved with Rxx(τ). This is the auto correlation function,
this is the cross correlation function of the output with the input and this is the
auto correlation of the input.

Now if we assume that our input, because the input is our choice at least for
these cases, we can create the input ourselves and play that kind of stimulus, use
that kind of stimulus and record the spike trends from the neuron. So if we create
the stimulus to be such that our x(t) is Gaussian white noise then this relation
Ryx(τ) with Rxx(τ) becomes much more simpler and much more simple and that
is because when we say Gaussian white noise process, if the input is a Gaussian
white noise process, it simply means that at every instant we are drawing the value
of the random process from a Gaussian distribution and if every instant the value
is independent of any value elsewhere of that process. So that means if we think of
the auto correlation function, that is how the expectation of x(t+τ) and x(t), since
these are totally unrelated they are independent of each other, so this is always 0
for all τ not equal to 0. And in fact what we find, what we can show is that at
τ equal to 0 we will have an impulse from the definition of this expectation for
our process when we do the integral it will simply turn out to be an impulse at 0.
And so the auto correlation function of a white noise process Rxx(τ) is nothing
but δ(τ) and it can be scaled by σ2 depending on the power or the variance of that
Gaussian from which we are drawing and that determines the power in that noise
or the energy in that noise.

So this σ2 is nothing but the standard deviation or the variance of that Gaussian
white noise. And here we will also assume that our µx is 0, the mean value is
0. The 0 mean Gaussian white noise then we have the auto correlation function
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Rxx(τ) is simply σ2δ(τ). So that means if I were to draw, if this axis is τ , if I
were to draw this is 0 then the auto correlation function is simply in red it will be
0 everywhere other than at 0 here and we represent the impulse at 0 with this arrow
and this height is taken to be σ2. So now the convolution of h(τ) and Rxx(τ) that
we have here if we now use the auto correlation function as described here then
our Ryx(τ) now becomes the convolution of h(τ) and this σ2δ(τ).

So and convolution is nothing but an integral and the σ2 can come out of the
integral and here we have essentially h(τ)δ(t − τ)dτ . So we have changed the
variable to t now I am sorry we have to do it with τ so this because this is τ
we need to have this t here and I am sorry we will have τ − tdt. So h(t) and
δ(t − τ − t)dt we showed that from the property of the Dirac delta function or
this delta such an integral is simply the value of the function h(t) evaluated at
this argument as 0 that is at t equal to τ . So that means this simply becomes
σ2H(τ). So in essence what we have now had is we have we have removed the
input function from here or input process from here because of it is because of the
white Gaussian noise assumption about the stimulus or in fact in our control that
is the stimulus.

So that is gone and Ryx(τ) is simply proportional to the impulse response in
the case of white Gaussian noise input. So the first relation that we have for LTI
and this kind of situation is that our Ryx is going to be proportional to the impulse
response of the system. So if we recollect here if this is our model at the top of
the page then the if we somehow can get the cross correlation y and x then that
is going to be proportional to the impulse response and that means we can get an
estimate of the impulse response of course within a scaling factor. So if we have
access to this y(t) which is the membrane potential for that we would require to
patch onto a neuron and know that y(t) but here we are given the problem of
recording the spikes extracellularly. So we have those all or none events and we
are recording only this p(t) only this p(t) here that is the spike train from this
spike train we need to be able to somehow connect it with this Ryx(τ) or hence
our h(τ).

So now if we consider so let us say we have this system x(t) as input then we
have y(t) then we have our nonlinearities the static nonlinearity and we have λ(t)
and then we have this point process production which is giving p(t). So now if we
consider p(t) what we essentially have over time are instances where spikes are
occurring that is the ti’s at the different ti’s the spikes are occurring that is all we
have and if we now discretize this time axis and create a new discrete variable or
process let us say q where we are breaking down this entire time duration let us
say we are recording over the period capital T as we have said earlier and so let us
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say this is 0 to capital T and we break it down into let us say m bins and the bins
are of size δ that is our δ times m equals T and the δ is so small that there can be at
most one spike in that bin and so we can actually replace the rate with probability
I mean we will see in a minute. So let us say we have this δ sized bins here so we
have δ sized bins here and there can be at most one spike in each of those bins so
the bins are essentially 0 or 1 that is the qi is either takes on a value either 0 or 1 in
the ith bin and the probability of this qi probability of qi equal to 1 would simply
be our if the rate function is λ(t) is simply λ at δi times δ so if δ is small enough
so this is simply going to be the probability that qi equals 1 if δ is sufficiently
small because that is the rate that is the number of spikes possible per unit time
and since only one spike is possible in a bin is simply multiplying by the bin width
we can get the probability of spike. So keeping this relation in mind we can go
forward with one more catch here that is since this delta is very small we will
assume that our rpx let us say we will cross correlate the pulse train or the spike
train with the input x is going to be close to our rqx there is a little bit of jump here
but for the purposes of this course we will see say that this approximation is valid
although there are a number of mathematical treatments that are required in order
to make this assumption because we have a delta function in the p(t) from which
we are coming to the rqx but this approximation is pretty good in the sense that if
we think that delta is going small and small and small and almost infinitesimally
small then our qi and the process q and the process p(t) are essentially the same
the only difference is that instead of the delta function we will have unit impulses
in discrete time in q. So this is this is the how to connect these two with each
other.

So now let us say we want to compute rpx from here we have that rpx that
means we have this x(t) and with a number of steps we finally have our p(t)
which is equal to summation δ(t − ti) and this i is going from 1 to capital nt.
So in order to compute rpx we need to get the expectation of the product of p(t)
and x(t − τ) or p(t + τ) and x(t). So since the p(t) is not I mean we will not be
getting p(t) over an infinite duration we can only estimate rpx and let us say that
that estimate is ˆrpx and that can be written as our average so rpx at τ is going to
be the average of so 1/nt for each of the spikes integral over 0 to capital t we have
x(t− τ) and summation δ(t− ti) i equals 1 to capital nt and here we have dt. So
now if we take the summation out we have 1/nt and summation i = 1 to capital
nt and here we have an integral of x(t− τ) and δ(t− ti) and dt.

So again we are posed with the situation where we have integral involving a
delta function and another function and so it is simply the evaluation of of the
function the other function in this case x at wherever this delta function is valid
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that is at t = ti. So we evaluate x(ti − τ). So this we can replace the integral
with with that calculation and it will simply be summation over 1 to capital nt

x(ti − τ). So what we have is an estimate of the cross correlation of the spike
train spike train and the input. So and what is this this x(ti− τ) if you think about
it let us say we have this is our x(t) over time this is the the time axis and let us
say we have p(t) along this 0 to t as spikes at this time point this time point this
time point this time point this time point and so on.

So this is each of these spikes are at ti so this is our t1, t2 and so on and so
what we are doing here in this sum that came out to be the estimate of our cross
correlation between p and x is that we for and it is a function of τ . So τ will
be varying between some minus some particular t to some plus positive some
particular t. So here is let us say this is the τ axis and this is τ = 0 and we are we
are plotting ˆrpx as a function of τ . So what we need that for each and every τ here
on this axis we need to compute this sum and average or and divide by capital
nt. So for each of these τ ’s if you see that at t1 if we take for t1 at a particular τ
behind t1 let us say or a particular τ after t1 what we will have here is the value of
if this is τ this is our x(t1 − τ).

If this is τ this is our x(t1− τ). Now for every τ on this axis that is essentially
throughout a window of τ around that spike it is simply this x(ti − τ) is simply
the entire waveform of x over this window. So that is the snippet as a function
of τ for t1. Similarly for t2 we will have a snippet or window around t2 which is
taking this waveform and similarly for each of those spikes and for and they they
are aligned by τ because if we put each of these the the t1 time point and the sur-
rounding window which is the τ axis and average over all the spikes we are simply
taking the average of these snippets around the spike and that turns out to be what
we call the spike triggered average. So because given every spike we are taking
the window around it of the waveform and averaging that for every spike and so
what we will see that since the stimulus this is the relation since the response is
caused by the stimulus what we will find is that when we do this averaging the
values for values τ greater than 0 this will hover around 0 and come down to noise
levels because the subsequent stimulus for that spike does not matter in terms of
producing that spike because essentially we are averaging the stimulus preceding
the spike and after the spike since the stimulus is not going to produce any spike
from the future period we will this sum should go down to 0 and that it does and
in the past time this τ with a latency we may get certain kind of function which is
the spike triggered average.

So that is this this this particular function is proportional to ˆrpx. So now we
have introduced the idea of the spike triggered average and we have also said that
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in our model that we have sorry in our model that we have we want we we need to
finally relate the spike train to the cross correlation between y and x and to do that
we have for the first step taken is we have looked at the cross correlation of p and
x that is the pulse train and x and we find that that cross correlation is nothing but
the spike triggered average. So in the next lecture we will now connect the spike
triggered average which is the cross correlation between p and x or an estimate
of the cross correlation between p and x with the ryx which is proportional to the
impulse response h(t) which is what we are after in terms of modeling this entire
system. Thank you.
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