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Lecture 17 : Phase Plane Analysis - II
Welcome. We have been discussing the analysis of the Morris-Lecar equations

using phase plane and we have been discussing primarily lately with the idea of
the stability of equilibrium points. And so just a small recap, we said that in the
phase plane for two-dimensional system of differential equations where this x dot
is some function of the vector x. Then with this as two dimensions, we have the
phase plane where we have one state variable x1, the other state variable x2. We
have equilibrium points where this dx1/dt equals 0 and dx2/dt also equals 0. So
essentially it is the intersection of the null planes.

That is in the Morris-Lecar case we have a v and w. So dv/dt equals 0 and
dw/dt equals 0. And so if I say that this x1 is v, this x2 is w, then the v null client
and the w null client which is essentially a function of w as a function of v, both
of them can be represented as w as a function of v. And wherever they intersect
are the equilibrium points.

And the property of the equilibrium points we said determine the property of
the system in general and in order to understand how it influences the system,
we talked about linearizing the equilibrium points around the equilibrium points
in the phase plane. And through linearization we find that the eigenvalues of the
Jacobian matrix, so if we have x that is now the deviation x is representing the
deviation from the equilibrium point is some jx where again x is two dimensional
vector and j is the Jacobian after the linearization. And the eigenvalues of j de-
termine the properties of the equilibrium points. So we said that if the eigenvalues
are λ1 and λ2, they are of two kinds that is stable and unstable. So if λ1 and λ2

both are negative, then they are stable and it is unstable when λ1 and λ2 both are
greater than 0, this is unstable.

There is another case of stable and unstable where λ1 and λ2 are complex. So
in the above two cases, the λ1 and λ2 are real but if they are complex, then the real
part of λ1 and the real part of λ2 that would determine the stability. So if both of
these are less than 0 or negative, then it is a stable spiral and when both of these
are greater than 0, then it is an unstable spiral. And we said that the behavior of
the system near the equilibrium point can be represented with these ideas of stable
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and unstable equilibrium points. So we are left with one more case which is the
most interesting case maybe and also it is the basis of understanding threshold
behavior in neurons.

So the last case is when this λ1 and λ2 are real and of opposite signs. So when
they are complex, the real part of λ1 and λ2 cannot be of opposite signs because
we have all real coefficients in the Jacobian or real values in the Jacobian matrix.
So they have to be complex conjugates, the λ1 and λ2 and so their real part must
be of the same sign. Both of them must have the same sign. So the only case that
remains is when let us say λ1 is greater than 0 and λ2 is less than 0.

So we said that the solution to the system of differential equations near the
equilibrium point is given by Aeλ1t and along the eigenvector e1, the eigenvector
corresponding to λ1. So j the e1 is equal to λ1e1 and je2 is λ2e2. That is λ1 and
λ2 are the eigenvalues and the corresponding eigenvectors are e1 and e2. And so
this is Beλ2te2. So this is the trajectory of the system near the equilibrium point.

So that is when we linearize it around the equilibrium point. And A and B can
be determined from the initial values and we get the trajectory very close by. So
essentially as we have discussed earlier, it shows that depending on the sign of λ1

and λ2, it either decays along e1 and e2 or it diverges along e1 and e2 based on the
sign of λ1 and λ2 given the over time. So now when the case of λ1 greater than 0
and λ2 less than 0 is considered, then near the equilibrium point what is happening
is it is diverging along one of the eigenvectors while it is converging towards the
equilibrium point along the other eigenvector. So this gives an interesting behavior
that is if let us say this is the equilibrium point whose linearization yields λ1 and
λ2 such that one is they are of opposite signs and they are real.

So if near the equilibrium point this is the direction of e1 and this is the di-
rection of e2, then if λ1 is greater than 0, then over time if we start the system
very near the equilibrium point, it will start to move away along e1, whereas it
will start to move towards the equilibrium point along e2. What this does is that
it creates trajectories that are of this nature that is it is coming down like this. So
as you can see along e2 the distance between them is decreasing. This distance
to the equilibrium point is decreasing. So this is the distance along e2 here, this
is the distance along e2, this is the distance along e2, this is the distance along e2,
whereas the distance from the equilibrium point along e1 keeps on increasing.

And if we look at the other opposite directions of it, we will find the trajecto-
ries near the equilibrium point behaving in this manner. So that is here and here.
So anything that is close by would move away along the positive eigen, the eigen
vector corresponding to the positive eigen value. So we also along with this we
bring in the idea of what we call manifolds or the two essentially trajectories as-
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sociated with any equilibrium point like this which is called a saddle node. So this
kind of as we had said earlier this kind of an equilibrium point is called a saddle
node.

So what are the manifolds? That is now if we start the system right near the
equilibrium point just along e1 with an infinitesimally small deviation from the
equilibrium point along e1 and now no component along e2. Then what would
happen is that if I draw this here let us say if this is our e1 and this is our e2 and
e1 has the λ1 is greater than 0. Then if we start along this it will go straight along
this line along e1 as long as the linearization is valid. That is the e1 is a correct
representation of the trajectory. Remember we have linearized it to be this is valid
only very close to the equilibrium point.

So if we move along e1 slightly further then that e1 is not valid anymore that
is it will not continue only along e1 away from the equilibrium point. So just as it
goes out of the range of the linear behavior then it will start its own direction in the
sense of whatever is the dx1/dt and dx2/dt or dv/dt and dw/dt and accordingly
the derivatives will appear and it will keep on moving accordingly and will end
up somewhere. I mean it usually ends up on another equilibrium point or goes
outside of the range of allowed values. So or usually on another equilibrium
point. So what this kind of or this trajectory is called one of them is the unstable
manifold.

Similarly along the negative e1 there will be the other part of the unstable
manifold that is the direction along which the system will go if you start it just
outside of the equilibrium point along e1 with no component along e2. The other
is if we have e2 if we start slightly away from the equilibrium point along e2
or along minus e2 so let us say this is our e2 and our λ2 is less than 0 is less
than 0 then if I start very close by the equilibrium point and leave it there the
system will go directly into this saddle node because that is the linear behavior
near the equilibrium point that and that is the trajectory it is supposed to follow.
Similarly along minus e2 if we start it very nearby it will again converge on to
the equilibrium point or saddle node. So the question is that somewhere around
the saddle node the range over which it is linear if I start the system there it will
continue into the saddle node. So and if I start anywhere outside of that e2 then it
is not going to go into the saddle node anymore because we will have a component
along e1 and so it will diverge.

So if we start very close by exactly along e2 then it has to go into the saddle
node whereas any other point or starting away from that line infinitesimally away
from that line it will never go into the saddle node. So this brings the point that
wherever it is that this trajectory is pulling in the system into the saddle node there
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is only one point outside and so there must be a trajectory outside that ends up
being at that point which will direct into the saddle node along the stable manifold.
So this trajectory along which the solution is ending up along e2 into the saddle
node is what we call the stable manifold. So similarly thus extending the same
idea along negative e2 then we have another trajectory that ends up into the saddle
node which is the another stable manifold. So now as you can see these manifolds
are actually trajectories.

So that means that these manifolds if a saddle node is present in the phase
plane these manifolds are separating out the phase plane into different regions be-
cause if you remember we said that two trajectories cannot cross each other since
the manifolds are trajectories if I start the system here it is going to be bounded
by this manifold around within this region. Similarly if I start the trajectory here
or the system here it is also going to remain within this manifold region within
this region similarly on the other part here and here. Of course let us say that this
ends up being on to a stable node or this ends up being on to a stable node then
the trajectory can go around and go there. So it is not crossing the manifold. So
the manifold is ending at this stable node or it is ending at this stable node and
then the trajectory from here may go into this region but that may not necessarily
be the case.

So you must appreciate here a few things that is the idea of the saddle node
and the associated manifolds the stable and unstable manifolds and how they be-
have as separators of the phase plane or called the separatrix. And you must also
remember that if we are infinitesimally to the right in this case or to the left in
this case we will have very different behavior in the system. So if we have a
manifold like this a stable manifold going into a saddle node I start the system
infinitesimally to the other side or infinitesimally to the opposite side. So they are
extremely close initial condition very close by yet their behavior will be entirely
different because they will diverge away along plus along the positive eigenvector
with the along the positive direction of the eigenvector whose eigen correspond-
ing eigen value is positive and the other will diverge along the negative direction
of that same eigenvector. So if this is the other two directions this is where this is
how it is going to go.

So this is as we will see is the going to be the basis of threshold behavior and
why we call action potentials all or none or that if it is on below a threshold point
it behaves in one particular way just above the threshold point it will behave in
an entirely different way in fact in our case it will produce an action potential.
So extending the this concept of saddle node let us consider the Morris-Lecar
equations as we have and if we recollect it is Cdv/dt and we have terms with
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M∞(v) and w(v)gk −−v − ecalciumgcalciumbar and this is v − vk − gleakv − eleak
and iexternal and we of course have the dw/dt is equal to w∞(v) − w/τw(v). We
have the functional forms of w∞ and τw as a function of voltage. We have all
the values of all these parameters and we have discussed how this system behaves
and shows near threshold behavior and not exact threshold behavior and the reason
was that the fast dynamics required to model the threshold behavior which is given
by this M∞ we are excluding its changes that is its dynamics that is we are not
including dM/dt in these equations and we are setting M to be instantaneously
changing to M∞ because it is very fast. So we said that the initial changes cannot
be modeled very correctly and hence we did not get true threshold behavior as we
have discussed and it is not possible to get to threshold behavior in that sense but
if the parameters of this system can be changed are changed then this system can
actually show true threshold behavior.

So what I mean by that the set of parameters it will be provided to you and the
code also the set of parameters for which we can see threshold behavior is not a
real neurons behavior it is just mathematically it will show a threshold behavior
that is why we are going to study this. So there are a second set of parameters for
the Morris-Lecar equations with this gk, gl, el, ek and all the values the capacitance
and so on for which we get an equilibrium point a stable equilibrium point along
around minus 42 milli volts. So as we have said that us in that case let us draw
the phase plane so this being V and this being W . Earlier when we studied the
Morris-Lecar equation we always had one equilibrium point the case where we
showed near threshold behavior and the case where we talked about how it spirals
out into a limit cycle or oscillations or periodic behavior. In this case with these
set of parameters the null clients become different so if we look at the dv/dt null
client it turns out to be something like so and the dw/dt null client so this is the
dv/dt null client and the dw/dt null client turns out to be something like this.

So there are three equilibrium points in this case this is around minus 42 milli
volts this is around minus 20 milli volts and this is around 0 milli volts. So if
you linearize the system around these equilibrium points let us say this is the first
equilibrium point which we will call R or the resting membrane potential this R
is a stable equilibrium point. This particular one is an unstable equilibrium point
and the middle one turns out to be a saddle node. Now if we are to construct the
manifolds of this particular saddle node we will see so if we go to the actually with
a different color this is an unstable equilibrium point so stable manifold comes in
from here another stable manifold comes in from here. So remember all these you
will be provided to code to simulate it you will see this for yourself and that is the
only way to understand this fully.
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Here we can only describe how it would behave but we cannot quantitatively
show it in this lecture you have to numerically simulate them. So these are the
stable manifolds of that saddle node and if we look at the unstable manifolds what
happens is that one of the unstable manifolds goes into this stable node. The other
one that is along the negative side of it goes along this along this and down and
into this stable node. So these are the unstable manifolds and this is these are the
stable manifolds. So now if you recollect that let us say the system is at rest at
this particular resting membrane potential that is minus 42 millivolt or to resting
membrane potential it is not really neuron behavior.

And now if I start the system with the current injection as we had described
earlier somewhere to the right of this then remember without changing w we can
start anywhere along this line and this line. This already should give you the clue
of where the threshold is. So trajectories to the left of this stable manifold will
end up going like this and like this into this stable node. Anything that is to the
left of this stable manifold will go back to the resting membrane potential that is
minus 42 millivolt. And infinitesimally to the right here it will go diverge and
move along this unstable manifold and go back and into the resting membrane
potential.

And this is what is going to be the action potential because now if you plot
V as a function of time for the two sides of the manifold what you will see is.
So this is time and let us say this is where the stable manifold voltage is along
this particular line. Let us say along this line this particular voltage is this value
here. And so trajectories that start below or the their voltage component and will
go back down to the resting membrane potential. Let us say this is Vr this is V (t)
and so it will go back to the resting membrane.

Anything like this will go back into the resting membrane potential. Anything
like this will go back into the resting membrane. As soon as we start the trajectory
above the threshold it will follow the other unstable manifold and will show this
kind of a behavior. I am sorry it will go down and go below the resting membrane
potential and then go to Vrest. So this is essentially the action potential and the
stable manifold that separates the two regions is what is providing the threshold
behavior.

So this same idea so we are talking about toy system here by changing the set
of parameters where we can see the two threshold behavior. So now if we extend
this same idea to the Hodgkin-Huxley system then we have to consider a reduced
system where the sodium channel kinetics or the activation gates of the sodium
channel need to be included. So now if I if we remember the Hodgkin-Huxley
equations. So we are now shifting back to the Hodgkin-Huxley equations. This
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CdV/dt equals Iexternal−Gsodiumm
3h, V −ENa−GK , n

4, V −EK ,−GLV −EL.
I am sorry this is these are not vectors this is simply bar GNa bar and GK bar.

So we have now dm/dt if you remember and dn/dt and dh/dt along with the first
differential equation. Now if we have the dn/dt if we if we want to have a true
threshold behavior as we said we need to include the fastest of the state variables
in this case the dm/dt and that opening of sodium channels or the activation gates
of sodium channels that is required. If you remember we qualitatively said how
the activation gate keep on opening and sodium keeps on coming in which causes
the action potential.

So m becomes crucial. So we include the dm/dt in the phase plane analysis
with m∞(V ) − m/τm(V ) and our dn/dt is removed dh/dt is removed and we
set n equals to n∞(vrest) or which is in the Hodgkin-Huxley case around minus
60 milli watts. Similarly h also we set to h∞(vrest) why because n and h are far
slower compared to m more than order of magnitude h and an order of magnitude
slower for n. So what we are doing is we are keeping the n and h whatever they
were at the resting state or the resting membrane potential that is vr and we are
allowing m. So without the changes in n because n is fixed at vrest and h is also
fixed at vrest we cannot get the full action potential behavior. Remember we said
that the validity of the reduced systems in this case we are talking of the v,m
reduced system of the Hodgkin-Huxley equations.

The validity of this reduced system is there only when the assumptions are
valid that is n is not changing h is not changing. So it is only in the initial few
milliseconds one or two milliseconds that we can mimic the behavior with the
reduced system. In order to truly model the system over time longer than that we
need to include n and h. But the threshold behavior is early on through the is in
the very beginning when we do a current injection and see if we can move the
system beyond the threshold or not. And that can be seen with just this reduced
system.

So if we have the reduced system like this if we draw the phase plane V and
we have m in this case the threshold of the system or the Vrest of the system is
around minus 60 millivolt. And we will see that we have the m or the m-nullplane
to be like this. And if we use the same equations the V -nullplane would behave
in this manner. So this region needs to be blown up here and what we essentially
have is two equilibrium points one that is the intersection of the V -nullplane and
the w-nullplane creating two equilibrium points.

So one is the stable one at minus 60 millivolt. So if you linearize the system
around this particular point or equilibrium point you will see that the Eigenvalues
are all negative and it is a stable equilibrium point. And this again turns out to be
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a saddle node. And the last one at the top is this is when m has actually reached
1 and this is voltage of around 53 millivolt which is like the sodium reversal po-
tential. And this one this equilibrium point the voltage here is around minus 56
millivolt or something near that. So you will have codes and you will you can run
it for yourself and see.

So now again this saddle node has the stable manifold which very very much
like the Morris Lecher second parameter system has stable manifolds that are
coming in to this particular point this saddle node. And the other one actually
comes in from outside the phase plane. The other unstable manifolds which we
were drawing in cyan will end up on to the stable node and the one negative to
that will end up actually will end up on this stable node. So it will go out along
this direction. So this particular unstable manifold is when when extended it goes
up to the other stable node at the right end of the right top corner.

So as we can see here if we start the system anywhere along this yellow line
which is at the resting n. So this is n and this is what it was at rest and this is our
Vrest. Then by shifting it through a current injection and initial value of voltage is
somewhere near this stable manifold but on the left then the behavior is like this
and like this. And in the other case the behavior is like this where it ends up being
on this particular saddle node in the particular stable node as shown here. So this
is extending on to the other saddle node which is at the top.

So now you will ask so where is the action potential? Well as we had said
we would not be able to show the action potential because it needs n and h to be
changing. So what we because we do not have them changing we have the point to
which the sodium will take it to which is the stable node where m equals 1 which
is the saturation of opening of the activation gates. And now h and n are not
changing so this is only the left part or the initial part of the action potential that
will be shown here. So with this we conclude about how the action potential has
a true threshold behavior and how even in the Hodgkin-Huxley we can produce
the and see the true threshold behavior and this is why we will consider action
potential as all or none. So if it is on the below threshold that is on the left hand
side of the stable manifold it goes back to the resting membrane potential if it is
to the right or above the threshold that is or to the right of the stable manifold it
will produce an action potential.

So with this we conclude the ideas of threshold and next we will be talking
about oscillations and mainly about limit cycle behavior. Thank you.
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