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Lecture 16 : Phase Plane Analysis - I
Welcome. So we will continue on with our discussions of the Morris-Lecar

equations and in the phase plane, that is with the phase plane analysis, the tools
that we are learning about. So we ended the last week’s discussions with an ex-
ample of the sensitivity to initial conditions, which is one of the behaviors of
non-linear systems that you would not see in a linear system. So we showed that
there is a threshold like behavior in the Morris-Lecar equations at a particular volt-
age, that is if we start the system in to the left of that particular voltage and to the
right of that particular voltage, we will get two very different kinds of behavior.
On the right that is with a voltage above that value, that is above the threshold,
we get spikes and below that value, which is below the threshold, we do not get
spikes. In both cases, the system ultimately moves in the phase plane and ends at
the equilibrium point, that is its resting membrane potential.

So in that case, we were starting the system somehow with by moving the
initial value of the voltage to a higher value by perturbing the system from the
equilibrium point to a higher voltage value with the ’w’ at the same point. So we
can actually achieve that with a current impulse, which is a different discussion
and the counter, another way of stimulating the system that we have been drawing
before is by using a current injection, that is a current that will keep on going for
a period of time. So let us say this is zero current, this is time and this has some
particular value I0 So in this particular case, when I0 is approximately 95 micro
amp per centimeter square. So I must say that these kind of numerical values that I
am pulling, I am not pulling out of thin air, these are actually based on simulations,
which you will be provided to study.

And the units of these are also, there is a discussion that you should have
had beforehand about the units of this kind of systems of equations during the
introduction to simulation of these systems. So when we have this kind of a
current, this amount of current, how do we understand the behavior of the system?
Let us say this is V and this is w. So here time, so let us say it is, if this is time
zero, then Iexternal is now becoming I0 for a period of time as long as we want
to simulate it, let us say. So that means if we have our nullclines, let us say our
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V-nullcline was like this and our w-nullcline as drawn earlier is somewhat like
this. So this is our w-nullcline, our V-nullcline.

Remember this is the original system that we had. Now we have an external
current that is I0, a fixed current, which means that now Iexternal needs to be
incorporated in the system and would it make any changes in whatever we have so
far in the phase plane? Indeed it will because if you remember that our V-nullcline
or w-nullcline is CdV/dt = Iexternal−Gcalciumminfinity(V ), V −Ecalcium−
GKw, V − Ek,−GleakV − Eleak. So now we have our dV/dt = 0 and now if
we get the w values at the V-nullcline, that is by replacing this dV/dt by zero and
equating the rest to zero, we will see this w-nullcline is turning out to be Iexternal−
Gcalciumminfinity(V ), V −Ecalcium−Gleak, V −Eleak/GkbarV −Ek. So
earlier this Iexternal was zero. So that makes a difference in the nullcline and so
now the equilibrium point is not at zero at the V rest that we had before, it has
moved away from there.

Would anything be happening to our W nullcline? There is no Iexternal in
the W nullcline. The W nullcline was simply that W, W and C value, W nullcline
values is Winfinity(V ). Then the Winfinity(V ) did not have any Iexternal there.
So the V nullcline remains the same and Iexternal is positive, so which simply
means that this will be shifting upwards, this entire V nullcline will be shifting
upwards. So it will shift up to some point here, so it will shift upwards in this
manner and the equilibrium point which was here has moved to this new point
which is marked in cyan let us say.

So the equilibrium point is changed. So let us draw this new phase plane, I am
sorry, let us draw this new phase plane with the new nullclines V and W and let us
say that the V nullcline is like this and the W nullcline is going like this. So this is
our new equilibrium point and the interesting thing is that under these conditions
that is this Iexternal = I0 which specifically let us say 95 microampere centimeter
square and the system if is just outside this equilibrium point, what it would do is
that it would start to move around it couple of times and then it would move in this
direction and then it would move in this direction and keep on moving along the
same trajectory all along. Which means if we look at the behavior of the system
with time, so this is the solution of the system with I0 equals 95 and the system
being started just around the equilibrium point very close by. Remember if we
start exactly at the equilibrium point it is going to stay there forever, theoretically
it has to and if when we do this for simulations we simply start the V and W value
slightly off the equilibrium point just a tiny little bit and then we see this kind of
trajectory.

So there is a spiraling out of the equilibrium point and then it starts to move
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along the same sort of trajectory along with time. So the VT which is the solution
here can be plotted and it will turn out to be, so let us say this is the particular V
value this is 9, so this is the V of the equilibrium point. So if you start here what
we are seeing is a sort of movement in V like so and then all of a sudden it bursts
into large oscillations. Since it will repeat the same trajectory it is oscillating. So
again this kind of, so all these curves, all these oscillating trajectories are going to
be identical to each other in the sense that they are repeating the same curve all
along.

So this kind of behavior is what we call a limit cycle that shows oscillations.
So in linear systems we would never see this behavior in the sense that now let
us say if I start the system here then also it will if in a let us do it in a different
color then also it will end up going on to this same trajectory and start to go into
oscillations. If we start the system from outside this particular point even then the
system will go and evolve to join that same limit cycle. So nowhere where you
start in this phase plane actually within the limits of the possible V and W values
we will end up on that same trajectory all the time which is that limit cycle. So
this means that in spite of changes in the initial value in fact very large changes in
the initial value there is no change in the final oscillating behavior of the system.

In other words in a linear system if we have to see oscillations then it becomes
the size of the oscillations would become proportional to the input size. In this
case it is going to converge on to the same sized oscillations and the same oscil-
lations throughout. So this is another typical behavior of non-linear systems or
another different kind of behavior of non-linear systems which make these sys-
tems so interesting to study and we will see that this kind of limit cycle behavior
does exist in neurons where we have a small fluctuation that can then go into os-
cillations if we have a background current for a while. Now so both the things
that we have seen so far they actually we presented it in a manner such that as if
with simulations we came upon those phenomena like the limit cycle here or the
threshold kind of behavior it is as if we said that if we keep on increasing V a
point will come when all of a sudden there will be action potentials after a partic-
ular value. And here also it is simply that let us start near the equilibrium point
and then try out other places and see that that is going into the trajectory all the
time on the limit cycle.

So actually we can in fact have make predictions about these systems whether
they will have a limit cycle or not or at least based on different conditions can
predict whether they will necessarily have a limit cycle or not or otherwise or if
there is going to be threshold behavior or not and so on that can be done based on
simply looking at the equilibrium points the properties of the equilibrium points.
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So as you may notice we did this earlier when the equilibrium point was here and
if you remember if we started here the system would go back and come back into
the equilibrium point. In this case it is actually going away from the equilibrium
point and going on to this trajectory here in the on the limit cycle. So how do we
know priori before hand given the system without simulating whether the system
is going to go away from that equilibrium point or whether the system is going to
come back into the equilibrium point. So for these very ideas it is formalized by
looking at the stability of the equilibrium points.

So we can compute or we can determine the stability of the equilibrium point
by linearizing the system close to the equilibrium point. In other words if we
consider the entire system and then look at a very small neighborhood around the
equilibrium point in the phase plane then we can change the system of differential
equations into or rather the dV/dt and dw/dt into linear functions. And with those
linear functions we can determine whether the system whether the equilibrium
point is stable or unstable or something else which we are going to discuss in a
little bit. So if the system is attractive in nature if the equilibrium point is attractive
in nature that is how it was in the earlier case where there was no Iexternal Iexternal
was 0 we found that the trajectories went and ended up at the equilibrium point.
So those kind of equilibrium points are the stable equilibrium points that is they
attract the trajectories to come and stay there.

And the kind of equilibrium point that we can talk about here is unstable equi-
librium points. So in order to look at the stability and linearize the system we
have to take into account little bit of mathematical treatment around of the equa-
tions. We will try to understand the stability of the equilibrium points based on
linearization around a small in a small neighborhood around the equilibrium point.
Let us say that for any system let us first consider an n dimensional system like
this where we have our vector and a vector variable Ẋ which is a function of the
vector X which can be let us say represented let us say X the vector X is given by
the elements x1 the variable x1, x2 up to xn and the derivative and these are the
derivatives of that and f(X) is basically going to be f1 function of the elements
x1 up to xn and this is f2(x1, .

.. xn) this is fn(x1...xn). So if we were to linearize the system we have to
replace this by a polynomial and consider only the up to the first order term.

So if we use the Taylor series expansion then with f1(x1 up to xn) we will see
that we have the 0th order term which is f1 at 0 or here we are evaluating it at the
equilibrium point which is let us say our x0 and this x0 as a vector is x10x20 up
to xn0. So this f1 at x0 is going to be the first term and then plus ∂f1/∂ the entire
vector then we can sum it up with ∂x1 up to x1 − x10 plus ∂f1/∂x2x2 − x20 and
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so on. So these are the only first order terms for this n dimensional system. So we
now f1(x0) where x0 is the equilibrium point we know is going to be 0 f1(x0) is
equal to 0 and here I am sorry the ∂f1 is evaluated at x equal to x0 in each of these
cases. So this term goes to 0 so we are only left with the derivatives or the partial
derivatives of f1 with respect to x1, x2 and up to xn.

Similarly for f2 we can replace it by f2(x0) and then ∂f2/∂x1 and so on with
the multiplication of x2 − x20 and so on. So now again f2(x0) is also going to be
0. So with this we can extend the idea and see that this is turning out to be ẋ1 ẋ2 up
to ẋn is by setting these terms to 0 we will have ∂f1/∂x1 and this is multiplied by
x1−x1naught and ∂ plus ∂f2/∂x2x2−x2naught and so on will not extend these
terms. Now we if we substitute x is equal to or x as the change ∆x let us say is x1

is x1 − x1naught then our ẋ1 is also simply ∆ẋ1 this is simply the coordinate of
the equilibrium point along x1 axis. So these x1 − x10, x2 − x20 can be replaced
by a single variable let us say little x and this can be replaced similarly by the
single variable little ẋ for the entire vector.

So let us go one step further that is we have ẋ1 ẋ2 up to ẋn and now we
convert the earlier functions we can write it as simply a matrix multiplied by a
vector where we have ∂f1/∂x1 as the first term along the first row ∂f2/∂x2 as
the second term in the first row and so on multiplied by the vector x1 − x10 is
the first term x2 − x20 is the second term and so on. So here we will see that we
can replace it with ∂f1/∂x1 evaluated at the equilibrium point ∂f1/∂x2 evaluated
at the equilibrium point and then ∂fn/∂f1/∂xn multiplied by x1 − x10 x2 − x20
up to xn − xn0. So by multiplying this row with this vector we get the term that
we had written earlier which is this sum. Similarly for the next function the next
variable ∆x2 ∂f2/∂x1 evaluated at xnaught and ∂f2/∂xn evaluated at xnaught.
So now if we replace x1 x by or capital X by little x then this whole equation can
simply be written by ẋ equals this matrix which is a Jacobian times x where x is a
vector which is where x is representing the variation from the equilibrium point.

That is we had this in our case V and M in the two dimensions and this is let
us say the equilibrium point then the 0 of this x is at the equilibrium point and
x is representing any position with respect to this particular as an axis. So it is
this x1−x1naught is the deviation from the equilibrium point along this axis and
x2 − x2naught is the deviation along the equilibrium point on this axis. So and
this matrix that we have written here is called the Jacobian matrix and it simply
is the first order derivatives partial derivatives evaluated at the equilibrium point.
So now that we have linearized the system so this is as you can see is simply a
linear system where we have only first order derivatives and we have removed all
the second order terms. So this neighborhood is such that this system has to be
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valid this linearization has to be valid.
So the behavior of the system what we will derive from this final form ẋ = jx

must be valid only in a very tiny region around the equilibrium point. As soon
as the system goes out of the equilibrium point or out of that neighborhood tiny
neighborhood the system will start I mean it will not follow this linear behavior
anymore and we will have to linearize the point again and so on. So near the
equilibrium point the ẋ = jx this system of equations is going to predict the
behavior of the system. So for a equation of this form equals jx there is only there
is one solution to this equation which is if I mean it with the initial conditions can
be come about later. Let us say if x is made up of x1 and x2 equals j and x1 and x2

then if j has eigenvalues λ1 and λ2 and eigenvectors corresponding eigenvectors
v1 and v2 then the behavior of the system.

So this is the general solution for two dimensional system with the matrix j
having eigenvalues λ1 and λ2 with eigenvectors corresponding eigenvectors v1 and
v2. You can check yourself that this is the solution by plugging it into the x dot
here and x there and you will find that this is indeed the trajectory. So the behavior
of the system near the equilibrium point let us say here this is x1 this is x2 will be
determined actually now by these eigenvalues λ1 and λ2 because if we have and
v1 let us say v1 is this direction and v2 is in this direction what this equation is
showing is that at very close by the system will move along the eigenvector v1 and
will have an exponential trajectory eλ1t and at the same time it will move along
v2 the eigenvector v2 exponentially with eλ2t as the function. So obviously if our
λ1 and λ2 are less than 0 when we say less than 0 we are already implying that λ1

and λ2 are real. Then we can see that if the system is around the equilibrium point
then because the λ1 and λ2 are negative over time this term eλ1t and also eλ2t is
going to go to 0 which means that both along v1 and v2 it will finally die down
into the equilibrium point.

So when λ1 and λ2 are going to be less than 0 this would be a stable equilib-
rium point. Similarly if λ1 and λ2 are both greater than 0 then the system is going
to be an unstable equilibrium point is going to be unstable which means that based
on this solution that over time the system is going to go diverge out in along v1 the
first eigenvector and also along v2 the second eigenvector and so it is not going to
come back into the equilibrium point which would be so its behavior would be to
push out the system from the from near the equilibrium point because of simply
the sign of the real eigenvalues in this case and we will see that even for complex
λ1 and λ2 if the real part is negative then it will be a stable equilibrium point but
with an additional property of being a spiral then that will be called a stable spiral.
Similarly when λ1 and λ2 are both positive then also it will be again unstable with
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an additional property that it will be a unstable spiral which means that if this is
the equilibrium point and this is v1 and this is v2 for a stable spiral it is going to
go like this and gradually end up into the equilibrium point. So this is the final
direction and obviously for the unstable spiral if this is the equilibrium point and
this is v1 v1 and v2 then if we start the system near here it will gradually move out
of the equilibrium point of or from the vicinity of the equilibrium. So remember
that these are only valid to valid only close by but that is sufficient to predict the
behavior of the trajectories that are going to come around it close by it and we
will see that indeed with this analysis we can conclude a number of things about
the systems properties and the phenomena that the system can show.

So we will stop here by next going on to another kind of equilibrium point
which is the last obvious case that is remaining that is λ1 and λ2 being of opposite
signs that is let us say λ1 is positive λ2 is negative that has a very different kind
of behavior and that is called a saddle node. So if I can write it down λ1 is less
than 0 λ2 is greater than 0 or vice versa then this is called a saddle node whose
properties we will be discussing in the next lecture. Thank you.
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