
Computational Neuroscience 

Dr. Sharba Bandyopadhyay 

Department of Electronics and Electrical Communication Engineering 

Indian Institute of Technology Kharagpur 

Week – 03 

Lecture – 15 

 

Lecture 15 : Properties of MLE 

The Morris-Lecar equations are a system of nonlinear differential equations that 
describe the electrical characteristics of a neuron. The equations are given by: 

𝐶
𝑑𝑉

𝑑𝑡
 = 𝐼external − 𝑔Ca𝑚∞(𝑉)(𝑉 − 𝐸Ca) − 𝑔𝐾𝑤(𝑉 − 𝐸𝐾) − 𝑔𝐿(𝑉 − 𝐸Leak ) (1)

𝑑𝑤

𝑑𝑡
 =

𝑤∞(𝑉) − 𝑤

𝜏𝑤(𝑉)
(2)

 

where 𝑉 is the membrane potential, 𝑤 represents a gating variable similar to those found 
in the Hodgkin-Huxley model, 𝐶 is the membrane capacitance, 𝑔Ca, 𝑔𝐾, and 𝑔𝐿 are 
conductances for calcium, potassium, and leak channels, respectively, and 𝐸Ca, 𝐸𝐾, and 
𝐸Leak  are the respective reversal potentials. 

A phase plane analysis of these equations involves plotting one state variable against the 
other, typically 𝑉 against 𝑤, to analyze how the system evolves over time from a 
particular initial condition. This representation is known as the phase plane, where the 
axes represent the membrane potential (𝑉) and the gating variable (𝑤), which varies 
from 0 to 1 . The evolution of the system at any point (𝑉0, 𝑤0) in this plane can be 

determined by the derivatives 
𝑑𝑉

𝑑𝑡
 and 

𝑑𝑤

𝑑𝑡
 at that point, indicating the direction and rate of 

change of each variable. 

To visualize the dynamics, one might calculate these derivatives at a grid of points in the 
phase plane and plot vectors that represent the instantaneous velocity of the system at 
those points. This method helps in understanding the overall behavior of the system, 
such as identifying stable and unstable equilibria, trajectories, and other dynamic 
phenomena. 

The uniqueness of the solution trajectory through any point in the phase plane is 
guaranteed by the existence and uniqueness theorem for differential equations, provided 
that the derivatives are continuous. This implies that trajectories do not intersect each 
other, reinforcing the deterministic nature of the system under continuous and well-
defined conditions. 

We continue our exploration of the phase plane in the context of the MorrisLecar 
equations by considering nullclines, which are crucial for understanding the system's 
dynamics. Nullclines are defined as the set of points in the phase plane where the rate of 
change of one of the state variables is zero. These are mathematically expressed as 
follows: 



For the voltage variable 𝑉, 

𝑑𝑉

𝑑𝑡
= 𝑓1(𝑉, 𝑤) = 0 

implies a relation between 𝑉 and 𝑤 which forms the 𝑉-nullcline in the phase plane. 

Similarly, for the gating variable 𝑤, 

𝑑𝑤

𝑑𝑡
= 𝑓2(𝑉, 𝑤) = 0 

defines the 𝑤-nullcline. 

At any point on the 𝑉-nullcline, there is no net change in the membrane potential 𝑉, 
meaning if a trajectory crosses this curve, it must do so vertically (either up or down). On 
the 𝑤-nullcline, there is no net change in 𝑤, so trajectories must cross this curve 
horizontally. 

Nullclines are pivotal for determining the system's behavior: 

• The 𝑉-nullcline and the 𝑤-nullcline intersect at what are known as equilibrium 

points or fixed points, where 
𝑑𝑉

𝑑𝑡
= 0 and 

𝑑𝑤

𝑑𝑡
= 0. At these points, the system, if 

undisturbed, remains static indefinitely. 

• These points are significant because they represent the neuron's potential resting 
states or any persistent activity modes. 

To find the analytical forms of these nullclines, consider the Morris-Lecar equations 
slightly rearranged: 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼external − 𝑔Ca𝑚∞(𝑉)(𝑉 − 𝐸Ca) − 𝑔𝐾𝑤(𝑉 − 𝐸𝐾) − 𝑔𝐿(𝑉 − 𝐸Leak )

𝑑𝑤

𝑑𝑡
=

𝑤∞(𝑉) − 𝑤

𝜏𝑤(𝑉)

 

where 𝑤∞(𝑉) =
1

2
(1 + tanh (

𝑉−𝑉3

𝑉4
)) describes the steady-state value of 𝑤 as a function of 

𝑉. Setting 
𝑑𝑤

𝑑𝑡
= 0 gives: 

𝑤 = 𝑤∞(𝑉) 

By analyzing the intersection of these nullclines and their behavior in the phase plane, 
one can predict the dynamics of the neuron under various conditions. The stability of 
these fixed points can further be analyzed by considering the Jacobian matrix of the 
system at these points, leading to insights into the neuron's response to perturbations 
and external stimuli. 

In our continued exploration of the Morris-Lecar model within a phase plane analysis, 
we focus on the behavior near equilibrium points and the system's response to 
perturbations. Consider the setup where: 



• The 𝑣-axis represents the membrane potential. 

• The 𝑤-axis represents the gating variable. 

When the system is perturbed near the resting potential (denoted as 𝑣rest  ), interesting 
dynamics emerge. Assume we initially perturb the membrane potential slightly to the 
right of 𝑣rest , keeping 𝑤 unchanged. Observing the system's trajectory in the phase plane, 
it typically follows a path that crosses the 𝑤 nullcline horizontally and the 𝑣-nullcline 
vertically, returning to the equilibrium point. This behavior illustrates the neuron's 
response as: 

• Initially increasing the potential slightly. 

• Then decreasing below the resting potential. 

• Finally returning to 𝑣rest . 

This trajectory can be visualized in a time-series plot of 𝑣 and 𝑤, showing how the 
variables evolve over time from the perturbed initial condition. The key observation here 
is the sensitivity of the system to small changes in initial conditions, a characteristic of 
nonlinear systems, leading to significant variations in behavior, including action 
potentials or spikes. 

If 𝑣(𝑡) is the membrane potential and 𝑤(𝑡) is the gating variable, then: 

𝑣(𝑡) starts near 𝑣rest , rises, then falls below 𝑣rest , and stabilizes back at 𝑣rest . 

This is represented as a spike or action potential. 

The described behavior highlights the nonlinear dynamics of the MorrisLecar model and 
emphasizes the system's dependence on initial conditions. Additionally, this model 
simplifies some aspects by assuming immediate responses in some gating variables (e.g., 
𝑚 ), which would typically provide faster dynamics, such as thresholds in a more detailed 
model. 

As we progress, we will explore how these dynamics can lead to other phenomena like 
oscillations in subsequent discussions. This exploration aids in understanding not just 
the behavior of individual neurons but also their collective dynamics in neural networks. 


