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Welcome. We have discussed the Hodgkin-Huxley equations and briefly explained, at least 

qualitatively, how the action potential occurs. To actually observe the phenomena, we need 

to simulate the system of Hodgkin-Huxley equations to fully understand it. Therefore, 

reading material and codes will be provided regarding the Hodgkin-Huxley equations, 

which you can use to explore their behavior using current injections and observe various 

threshold phenomena. The Hodgkin-Huxley equations explain a number of phenomena, and 

to analyze the system so that we can understand what the Hodgkin-Huxley equations can 

explain, we need to be able to reduce the system to fewer dimensions. The system of 

equations is essentially represented by this vector, let us say \(Ⅎb{𝑋}), which is the set of 

four state variables (𝑉),  (𝑚),  (𝑛),  a𝑛𝑑 (ℎ). 

 

The system of differential equations is described by the derivative of (𝐗),which are 

(�̇�), (�̇�), (�̇�), 𝑎𝑛𝑑(ℎ̇),and can be expressed as a sum function of this vector (𝐗). In this case, 

what we have is (𝑓1(𝑉, 𝑚, 𝑛, ℎ)), (𝑓2(𝑉, 𝑚, 𝑛, ℎ)), (𝑓3(𝑉, 𝑚, 𝑛, ℎ)), 𝑎𝑛𝑑(𝑓4(𝑉, 𝑚, 𝑛, ℎ)), or we 

can refer to them as (𝑓𝑉), (𝑓𝑚), (𝑓𝑛), 𝑎𝑛𝑑(𝑓ℎ). Visualizing and applying techniques to 

understand the behavior of such systems of equations is challenging. Often, if we can reduce 

the system to two dimensions by making some assumptions, we can understand a lot about 

phenomena related to action potentials and generally the Hodgkin-Huxley type equations. 

 

What we mean by reducing it to two dimensions involves making certain assumptions, 

which must be meaningful for a range of parameter values or a region of the phenomena we 

are trying to understand, not necessarily throughout the entire period of the phenomena, 

but maybe a part of it. Given that (𝑚) is very fast, \(n\) is intermediate, and \(h\) is very 

slow, we can assume, in one case, that (𝑚) is so fast that its dynamics are not required and 

(𝑚) instantaneously changes to (𝑚∞(𝑉)). Therefore, 𝑡ℎ𝑒(
𝑑𝑚

𝑑𝑡
) equation is not needed 

anymore, 𝑎𝑛𝑑 (𝑚) in the Hodgkin-Huxley system of equations can simply be replaced by 

(𝑚∞(𝑉)). 



Now, we can set (ℎ) to its initial value. Since (ℎ) is very slow, we can also remove the (
𝑑ℎ

𝑑𝑡
) 

equation and replace (ℎ) in the Hodgkin-Huxley equations by (ℎ∞(𝑉0)), where (𝑉0) is the 

initial voltage when the system simulation begins. We can assume that (ℎ) is so slow that it 

does not change at all; it stays at its original value from the very beginning. Thus, we 

eliminate two variables here, (𝑚) 𝑎𝑛𝑑 (ℎ), and we are left with essentially a system of two 

equations: (𝑉) 𝑎𝑛𝑑 (𝑛). Obviously, as we mentioned, these assumptions need to be 

meaningful. 

 

This means that the reduced system of equations has to work within a small range of values 

or a small region of parameter space. We cannot explain behavior here that depends 

strongly on (𝑚), such as the very fast change in the kinetics of (𝑚), which means we will not 

be able to explain the threshold phenomena. Remember, we require the voltage to gradually 

increase until the threshold is reached and then it escalates even faster to produce the 

action potential. If the dynamics of (𝑚) are removed from this set of equations, then we will 

see that the true threshold nature of neurons cannot be explained without (𝑚). Similarly, 

since the time scales at which (ℎ) starts to change, we would not be able to accurately show 

the behavior of the system with the (𝑉) 𝑎𝑛𝑑 (𝑛) system. 

 

What we have is something called the (𝑉) − (𝑁) reduced system where (𝑚) is fixed to 

(𝑚∞(𝑉))𝑎𝑛𝑑(ℎ) is fixed to (ℎ∞(𝑉0)), where (𝑉0) is the initial voltage. Now that we have 

only (
𝑑𝑁

𝑑𝑡
)𝑎𝑛𝑑(

𝑑𝑉

𝑑𝑡
) to govern the system, this will be meaningful only at intermediate time 

scales, not the very early time for the current injection period if we are trying to explain the 

action potential. Obviously, it is also not very useful to explain inactivation behavior or after 

the action potential is trying to bring the voltage down to complete the action potential, the 

behavior after that would not be accurate in this case because the dynamics of (ℎ) are gone. 

However, it will allow us to understand the behavior at the intermediate time scales. 

 

Now, we can extend this whole idea going forward where we set (𝑛) 𝑎𝑛𝑑 (ℎ) to their initial 

values and include the dynamics of (𝑚), 𝑠𝑖𝑛𝑐𝑒 (𝑛) 𝑎𝑛𝑑 (ℎ) are both extremely slow 

compared 𝑡𝑜 (𝑚). We can have a (𝑉) − (𝑀) reduced system such that (𝑛) and (ℎ) are not 

changing and are set to their initial values. This kind of system will allow us to observe the 

behavior at the very beginning of the action potential to understand the threshold 

phenomena. In this case, as you can see, if we have a (𝑉) − (𝑀) reduced system, we would 

not even be able to model the action potential because potassium currents are gone and (ℎ) 

is not there. So, once the voltage increases and (𝑚) reaches (1), we cannot bring it back 

down, or rather, whatever the potassium channels did, that phenomena is gone. 

 



So, since (𝑀 =  1), the voltage will not change and it will stay there; hence, we cannot 

model the entire action potential, but we can model the very beginning part of the action 

potential and explain threshold behavior with the (𝑉) − (𝑀) reduced system. We will delve 

into these types of analyses when we discuss more about the Hodgkin-Huxley equations. To 

develop the tools that are required to understand these two-dimensional reduced systems, 

we will study a set of equations called the Morris-Lecar equations. These equations are very 

similar to the Hodgkin-Huxley equations. They were developed to explain the behavior of a 

particular ganglion cell in a particular species and do not have the exact same kind of 

channels that the Hodgkin-Huxley equations show, but they possess similar properties to 

the Hodgkin-Huxley type of ion channels. 

 

The Morris-Lecar equations tell us that the dynamics of a certain ganglion cell involve the 

following equations: 

 

𝑑𝑉

𝑑𝑡
= 𝐼external − 𝐺calcium ⋅ (𝑉 − 𝐸calcium) − 𝐺K ⋅ 𝑊 ⋅ (𝑉 − 𝐸K) − 𝐺leak ⋅ (𝑉 − 𝐸leak) 

 

 

𝑑𝑊

𝑑𝑡
= 𝜙 ⋅

𝑊∞(𝑉) − 𝑊

𝜏𝑊(𝑉)
 

 

Here, (𝜙) is a temperature factor which we will not concern ourselves with at the moment. 

It simply scales the (
𝑑𝑊

𝑑𝑡
). We now need to understand (𝑊∞(𝑉)), (𝜏𝑊(𝑉)), 𝑎𝑛𝑑(𝑀∞(𝑉)) as 

functions of voltage to describe this entire system. 

 

These neurons have a calcium channel that can be described by one activation gate, denoted 

as (𝑀) and it is extremely fast like the sodium channels. This is set 𝑡𝑜(𝑀∞(𝑉)) as we 

discussed earlier for the (𝑉) − (𝑁) reduced system. They also have a potassium channel to 

explain their behavior, described by the gating variable (𝑊), which exhibits first-order 

kinetics similar to what we see in the Hodgkin-Huxley equations. The 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝐶), (𝐼external), (𝐺calcium), (𝐺potassium), (𝐺leak), (𝐸leak), (𝐸K), 𝑎𝑛𝑑(𝐸Ca) are all 

experimentally obtained and are provided for anyone who simulates this system of 

equations. Additionally, the equations for (𝑊∞(𝑉))𝑎𝑛𝑑(𝜏𝑊(𝑉))𝑎𝑛𝑑(𝑀∞(𝑉)) are described. 

For (𝑀∞(𝑉)), we have: 

 



𝑀∞(𝑉) =
1

2
(1 + tanh (

𝑉 − 𝑉1

𝑉2
)) 

 

𝑤ℎ𝑒𝑟𝑒(𝑉2) is another parameter added to the list. 

So, the parameters (𝑉1), (𝑉2), (𝑉3), 𝑎𝑛𝑑(𝑉4) are experimentally and empirically determined, 

and this functional form is the best that the developers of the Morris-Lecar model came up 

with to explain the data. Similarly, (𝑤∞(𝑉)) has the same form: 

[ 

𝑤∞(𝑉) =
1

2
(1 + tanh (

𝑉 − 𝑉3

𝑉4
)) 

] 

Here, (𝑉3)𝑎𝑛𝑑(𝑉4) are the new parameters that describe (𝑤∞(𝑉)). If plotted, these functions 

resemble activation plots similar to (𝑚∞(𝑉)) and (𝑛∞(𝑉)), resembling a sigmoid curve. The 

function for (𝜏𝑤(𝑉)) is best explained by: 

[ 

𝜏𝑤(𝑉) = 2 cosh (
𝑉 − 𝑉3

𝑉4
) 

] 

Given these parameters, we have all the information needed to simulate or numerically 

solve the equations, including the first equation (
𝑑𝑉

𝑑𝑡
) and the second equation (

𝑑𝑤

𝑑𝑡
). 

 

This system of equations is known as the Morris-Lecar equations, which can reveal a lot 

about action potential behavior among other phenomena. Considering numerical solutions, 

let's say: 

[ 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼external − 𝐼Calcium − 𝐼Potassium − 𝐼Leak 

] 

we replace those terms with conductance terms (𝐺Calcium) and gating variables, and have: 

[ 



𝑑𝑤

𝑑𝑡
=

𝑤∞(𝑉) − 𝑤

𝜏𝑤
 

] 

For any system of differential equations, we need a starting point or initial condition. 

 

Often, the starting point is the resting state or (𝑉rest), determined numerically from these 

equations as the value where the total current is zero with no current injection. The solution 

shows how (𝑉) changes over time starting at (𝑉rest)𝑤𝑖𝑡ℎ(𝑤) starting at (𝑤∞(𝑉rest)). If we 

consider perturbing the system from (𝑉rest) with current injection or a voltage clamp, we 

can solve these equations and understand what happens, and how (𝑤) changes with time. 

 

Thinking of (𝑉) 𝑎𝑛𝑑 (𝑤) as a pair of state variables, we can plot them on a plane, with (𝑉) 

on one axis and (𝑤) on the other. Starting at a particular point (𝑉0)𝑎𝑛𝑑(𝑊1), the solution to 

these equations is simply a trajectory in this plane, showing how (𝑉) and (𝑤) 𝑐ℎ𝑎𝑛𝑔𝑒 

together over time. This plane is called the phase plane where (𝑉) and (𝑤) are the state 

variables. At any point in this plane, the system's equations provide (𝑑𝑉/𝑑𝑡) 𝑎𝑛𝑑 (𝑑𝑤/𝑑𝑡), 

telling us how (𝑉) 𝑎𝑛𝑑 (𝑤) will change at that location. 

 

With small time steps, we can predict the system's behavior quite well, creating a grid of 

points in this plane, and plotting tiny arrows (a quiver plot) that show the direction of 

system movement at each point. This helps us predict whether the system will reach a 

particular state or follow a specific path. Ideal numerical simulation with small time steps is 

managed by solvers that allow us to simulate the system efficiently without extremely small 

steps, which are time-consuming. 

 

We will continue with the Morris-Lecar equations to understand more about the Hodgkin-

Huxley set of equations and how to understand their behavior. Thank you. 

 

 


