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Welcome. So, we were discussing our Hodgkin-Huxley system of equations that describe the spiking 

behaviour of neurons. Hodgkin-Huxley type models exist for a variety of neurons, as researchers 

have derived them based on the types of ion channels present or the density of these channels. 

These models have stood the test of time, and we know a lot more today in terms of actual gating of 

ion channels like the sodium and potassium channels, as we have discussed in our ion channels 

lectures. They seem to corroborate with what Hodgkin and Huxley proposed back in the middle of 

the last century. 

 

We said that ultimately the circuit model for the neuron is a point model, where a single voltage 

describes the entire neuron. We have the external current (𝐼external) under our control. The 

membrane is described by a membrane capacitor. The different ion channels we have include 

(𝐺Na)as a function of ( 𝑉 ), then we have our (𝐸Na), which is the battery representing the reversal 

potential of sodium, that is, when the voltage (𝑉in − 𝑉out) is equal to (𝐸Na), there is no net flow (i.e., 

(𝐼Na) is 0). 

 

Similarly, for the potassium branch, we are assuming only one type of sodium channel and one type 

of potassium channel, which describe the Hodgkin-Huxley equations and are adequate to explain the 

spiking behaviour of neurons. 

 

Additionally, we have ( �leak )and the corresponding (𝐸leak), and our (𝐸K). So, we are essentially 

trying to determine what our (𝐺Na) and (𝐺K)as functions of ( 𝑉 ) should be. As we have discussed, 

one of the governing equations of the system is: 

 

 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼external − 𝐺Na(𝑉)(𝑉 − 𝐸Na) − 𝐺K(𝑉)(𝑉 − 𝐸K) − 𝐺leak(𝑉 − 𝐸leak) 

 

 



For a voltage clamp, we described how we can determine the sodium current for different voltages 

by blocking one channel of the sodium and potassium channels. This sodium current can then be 

converted into obtaining (𝐺Na)as a function of ( 𝑉 ) and ( 𝑇 ) for a particular clamp. 

And so from this, we can derive this because we know what ( 𝑉 ) and (𝐸Na) are when we are 

blocking the potassium channel, and 𝑡ℎ𝑒(𝐺leak) and (𝐸leak) are known and (𝐼external) is basically 

corresponding to the sodium current that is going because we are in clamp mode as we have 

discussed in the patch clamp lecture. So, from this (𝐺Na) what we saw is that we have two 

components of the sodium conductance: one that is an activation part and another that is an 

inactivation part. And potassium has only activation when we clamp it to a particular voltage; the 

potassium conductance increases and stops at a particular value, the current increases and stops at a 

particular value, and so the conductance also increases and stops at a particular value. And that peak 

value is what we will say as the steady-state value of the conductance for that particular voltage. And 

what Hodgkin and Huxley then came up with is the idea that let us represent that sodium channel 

gating, voltage gating, with different gates where there are 4 gates, 3 activation gates and 1 

inactivation gate. 

 

So, why exactly the numbers 3 and 1 came about we will just briefly mention that it essentially came 

about empirically and that is with the other equations that we will see these explain the data the 

best and that I mean they came up with this with certain insight of course, which is the most 

important thing and then with the numbers that fitted the data best. And now from other studies, 

more than 60 years later, 50 years later we now know that indeed there are 3 activation gates and 1 

inactivation gate in sodium channels and 4 activation gates in potassium channels. So, this is for 

sodium channels and this is for the potassium channel 4 activation gates. So, as we mentioned the 

gates are activation gates are such that when voltage increases that is as voltage increases the peak 

value of the conductance increases. So, this (𝐺Na\) peak at that particular voltage as we saw last 

time. 

 

Similarly, for the inactivation gate, it is the opposite: that it with increasing voltage it has to come 

down. So, now as we also saw that if we repeat those voltage clamp experiments, we see stochastic 

behavior that is they are not always the ion channels all of them are not always opening or whatever 

fraction of them are supposed to open on average they do not always open in every trial. And so 

what that means is that there is a probability or stochasticity associated with the opening and closing 

of these gates or opening and closing hence opening and closing of these ion channels. So, what 

Hodgkin and Huxley then proposed is that let us represent the 3 probability of the 3 activation gates 

being open is represented by 'm'. So, this is the probability of sodium channel activation gate open 

that is represented by 'm'. 

 

And the inactivation gates probability of being open is represented by 'h' and the activation gates of 

the potassium channel being open that probability is represented by 'm'. With the assumption that 

these gates work independently and that they are a function of voltage what we find is that the with 

3 activation gates and 1 inactivation gates the probability of a sodium ion channel being open would 

be (𝑚3ℎ) where actually ( 𝑚 ) is a function of voltage again the cube of that and ( ℎ ) as a function 

of voltage again and this is assumed power 1 as there is 1 inactivation gate. So, if we assume that 

there are a large number of gates then on average we can say that the conductance of the sodium 



ion channels in the entire neuron can be given by a fraction of the total conductance. So, if we can 

measure the total sodium conductance of the neuron, that is the conductance of sodium when all 

the sodium ion channels are open, the conductance of the ion channels when all the sodium ion 

channels are open. If that is (𝐺Na
---) then it simply means that for a particular value of ( 𝑚 ) and ( ℎ ), 

on average, we will have the sodium conductance to be (𝐺Na
__ × 𝑚3ℎ) where implicitly these are 

functions of voltage. 

 

So, this (𝐺Na
__ ) is the overall sodium conductance of the neuron, the conductance of all the sodium 

channels put together, and (𝑚3ℎ) is the probability of each of those channels being open. So, with 

the law of large numbers, we can say that the conductance of the sodium channels on average is 

going to be this (𝐺Na
-- × 𝑚3ℎ\), again assuming independence between the different gates. Similarly, 

for the potassium we have a total potassium conductance of (𝐺K
-- × 𝑛4) that will describe the 

behavior of the conductance of the potassium channels. So, we can now rewrite this same equation 

that we have using these terms (𝐺Na
-- )and (𝐺K

___) and get a new equation where we have: 

 

 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼external − 𝐺Na

bar𝑚3ℎ(𝑉 − 𝐸Na) − 𝐺K
bar𝑛4(𝑉 − 𝐸K) − 𝐺leak(𝑉 − 𝐸leak) 

 

 

So, how do ( 𝑚 ), ( ℎ ), and ( 𝑛 ) change with voltage? We only saw so far what the steady-state 

value of these ( 𝑛 )'s may be at a particular voltage or maybe the ( 𝑚 )'s can be at the particular 

voltage, that is, if we allow the ( 𝑚 ) gates to be held at a particular voltage whatever is the 

probability of the ( 𝑚 ) gates being opened that is the steady-state value of ( 𝑚 ) at that voltage. 

What Hodgkin and Huxley did was that they the whole thing came about together, that with that 

equation and assuming that there is first-order kinetics of the gates they describe that for each of the 

gating variables ( 𝑚 ), ( 𝑛 ), and ( ℎ ). These are the gating variables they are as we said are the 

probabilities, but they are also dynamically changing based on the voltage since they are a function 

of voltage. So, what we have is then essentially first-order kinetics: 

 

 

𝑑𝑀

𝑑𝑡
=

𝑀∞(𝑉) − 𝑀

𝜏𝑀(𝑉)
 

 

 

There are a few terms here that need explanation. What we are saying here is that as if we hold the 

system at a particular voltage ( 𝑉 ) for a very long period of time, so that steady state is reached, in 

other words, this (
𝑑𝑀

𝑑𝑡
) goes to 0 in steady state, then obviously ( 𝑀 ) will reach (𝑀∞(𝑉)) as the 

(
𝑑𝑀

𝑑𝑡
)goes to 0 at steady state. So, if we are holding it for a very long period of time, ultimately 

( 𝑚 ) has to become (𝑚∞(𝑉)) and how fast it is reaching that(𝑚∞(𝑉))is this time constant \( 



𝜏𝑚(𝑉)). The more complicating factor here is that (𝜏𝑚) is also a function of voltage and (𝑚∞) is also 

a function of voltage and this (𝑚∞(𝑉)) is sort of the steady-state value that we were referring to 

when we were plotting the conductance curves for or the sodium current curves for with a voltage 

clamp or the potassium (𝑛∞(𝑉)) would be the potassium current curves that that peak value 

corresponding ah voltage like corresponding conductance and obviously, the associated fraction in 

that case that is the probability value of ( 𝑛 ). So, similarly, (
𝑑𝑛

𝑑𝑡
) is also described in the same way 

which is (𝑛∞(𝑉) − 𝑛), divided by (𝜏𝑛(𝑉)) and (
𝑑ℎ

𝑑𝑡
= ℎ∞(𝑉) − ℎ), divided by (𝜏ℎ(𝑉)). So, we have 

now a set of 4 variables ( 𝑉, 𝑚, 𝑛, ) and ( ℎ ) and we have 4 differential equations governing their 

dynamics that is our (𝐶
𝑑𝑉

𝑑𝑡
) equation with the(𝐼external, −𝐺Na

bar𝑚3ℎ(𝑉 − 𝐸Na)) and the rest of the 

terms now you are completely familiar with. So, and this is the first equation here this would be the 

second equation third equation and the fourth equation. 

 

So, the (
𝑑𝑚

𝑑𝑡
), (

𝑑𝑛

𝑑𝑡
)and (

𝑑ℎ

𝑑𝑡
). So, and you can see that they are all interconnected with each other. So, 

( 𝑚 ) is connected to the first equation through this (𝑚3ℎ)is connected to the first equation with 

(𝑛4)here ( ℎ ) is connected to the first equation through this ( ℎ ) and each of this 

( 𝑚, 𝑛, ) 𝑎𝑛𝑑 ( ℎ \) are connected with voltage because our (𝑚∞(𝑉)) and (𝜏𝑚(𝑉)) and the other 

gating variables are all dependent on voltage the similar equations. So, this set of differential 

equations cannot be solved analytically as you can imagine even if we first of all well 𝑡ℎ𝑒(𝑚∞) as a 

function of voltage this relationship needs to be known in order to solve this system of equations. 

Similarly, (𝜏𝑚(𝑉)) also needs to be known in order to solve these equations and so for the all the 

other gating variables. 

 

So, let us say even if we know them still let us say we have functional forms of them still these system 

of equations cannot be solved analytically and has to be simulated numerically in order to 

understand the behavior of the system. So, the way (𝑚∞(𝑉)), (𝜏𝑚(𝑉)) and the other ones that is 

(ℎ∞(𝑉)) and (𝜏ℎ(𝑉)) and (𝑛∞(𝑉)) and (𝜏𝑛(𝑉)) are obtained are with those voltage clamp 

experiments that we described. So, essentially with fitting the curves you Hodgkin and Huxley 

estimated empirically what the (𝑚∞(𝑉)) function would look like with voltage and all the others by 

fitting the time constants with the correct powers with the observed traces. And what they found is 

essentially the description is like this that if we have a voltage in this way and this is the (𝑚∞(𝑉)) as 

a function of ( 𝑉 ) then if the resting membrane potential is around minus 60 milli volt then there is a 

small value of (𝑚∞(𝑉)) and then it rises and reaches 1. So, the exact figures will be given in your 

handouts. 

 

Here we want to understand the system simply in terms of the characteristics and the real actual 

numbers will go into the simulation. So, they reach 1 at a particular voltage close to plus 20 milli volt 

or plus 40 milli volts. And (𝑛∞(𝑉)) also has a similar shape that is if we have this (𝑎ℎ)(𝑛∞(𝑉)) as a 

function of voltage it is also an activation gate for potassium channels this was also an activation gate 

for potassium channels and so the steady state. So, potassium gate opening probability is also 

increasing as a function of voltage just like the ( 𝑚 ) gates. And obviously, as we have described 

earlier also the ( ℎ ) in (ℎ∞(𝑉)) changes from a value of 1 and at around minus 60 milli volt it is 

around a 0.6 value that is all the a lot of the activation gates are open and then it drops down and 

reaches 0 as in voltage increases. So, Hodgkin and Huxley also came up with from this empirical data 



they came up with functional forms, I mean they are not obviously, theoretically derived, but 

something that explained the functions that really fit the data very well. And based on those 

functions you can actually put those (𝑚∞) and (𝑛∞) and in these equations to solve them further. 

Obviously, we also need the (𝜏𝑚(𝑉)) and all the other time constants as a function of voltage. And 

what they showed that what they found in fact is that for the (𝜏𝑠) if we plot the (𝜏𝑚) as a function of 

voltage, this is the voltage then it is more like a bell-shaped thing where it is at rest it is somewhere 

at the peak value near close to the peak value. 

 

And again the exact plots are available for you in your reading material and essentially the nature 

would be something like this that is sort of a bell-shaped thing. So, this is (𝜏ℎ(𝑉)) and this is voltage 

and this is (𝑉𝑟) or minus 60 millivolts. So, notice something that they all look similar, but a very 

important point is this scale here. So, these values (𝜏𝑚) values are very small, that is in the order of 

0.2 millisecond and less or less than half a millisecond. 

 

(𝜏𝑛) is of the order of 2 to 5 milliseconds and (𝜏ℎ) is of the order of 10 to 20 milliseconds. So, as you 

can see there is from ( 𝑚 ) 𝑡𝑜 ( 𝑛 ) 𝑡𝑜 ( ℎ ) these gating variables the or rather not the gating the 

time constant of each of the gating variables change almost an order of magnitude from 

( 𝑚 ) 𝑡𝑜 ( 𝑛 ) and then from ( 𝑛 ) 𝑡𝑜 ( ℎ \). And this essentially is the most important point in terms 

of describing an action potential using the Hodgkin-Huxley equations this difference in the time 

constants. So, what are we saying that the ( 𝑚 ) gates or the sodium channel activation gates open 

extremely fast and similarly the potassium channels are slower than the sodium channel activation 

gates and the so ( 𝑛 ) opens slowly and ( ℎ ) the activation gates they are opening and closing is 

further slower almost. So, these are all in almost multiples of 5 to 10 as we go from one to the other. 

 

This as if we now put all this together if now let us say we have the ( 𝑚 ) here and we are at 

(𝑉rest)which is equal to minus 60 millivolts and we have (𝑚∞(𝑉))and we have a small sodium 

activation gate open and a lot of that is point around 0.6 of the inactivation gates being open. So, 

here what we have is ( 𝑚 ) is small, ( 𝑉 ) equal 𝑡𝑜(𝑉rest\), very small, ( ℎ ) is of the order of 0.6. So, 

that means that (𝑚3ℎ)is also going to be small and so a very little sodium current is present at rest 

which is balanced out by whatever potassium current is there at rest based on the small value of 

( 𝑛 ). 

 

So, here also ( 𝑛 ) is also small. So, and so basically the(𝐼Na + 𝐼K + 𝐼leak)𝑎𝑛𝑑(𝐼external)is obviously 0 

and at rest in steady state ( 𝑑𝑉/𝑑𝑡 ) is 0. So, this is making the overall current across the membrane 

to be 0 at this point. And now we saw that we have synaptic inputs which are the current injections 

into the neurons or in other words let us say that (𝐼external)is we inject a small current. If we are 

patched on to a neuron let us say we inject a small current in there. 

 

So, what that does is if we inject a current ( 𝐼 ) into the neuron. So, let us say this is outside and this 

is inside which means positive ions have gone in that means if this is our 

\( 𝑉_{"{𝑖𝑛}} ) 𝑎𝑛𝑑 ( 𝑉_{"{𝑜𝑢𝑡}} ). So, this is the membrane since positive ions have gone in this 



(𝑉in − 𝑉out) increases. So, ( Δ𝑉 ) is increasing which is this axis here in this curve. So, from (𝑉rest) 

because of the current injection the system moves to the right slightly let us say. 

 

So, what happens is that because of this movement to the right this small depolarization which is the 

increase in voltage there is an increase in value of ( 𝑚 ) that is the probability of the sodium 

channels being open increases from this particular value to that value. So, this is the change in the 

(m∞(𝑉)) and since \( m \) is extremely fast the ( 𝑚 ) value reaches the (m∞(𝑉)) value almost 

instantaneously. So, what that does now is that ( ℎ ) is starting to change it has not changed within 

that less than half a millisecond period. 

 

So, ( ℎ ) is still very close to 0.6. So, more sodium channels have opened up potassium channels are 

also slow they also have not moved so much they also have not opened so much more with this 

small change in voltage because they also have a time constant of 2 to 5 millisecond that is they are 

they will also open, but very slowly. So, with this increase in voltage and there is an opening of more 

sodium channels and as you know that if the membrane potential is different from (𝐸Na) then the 

sodium and if there is a path available for sodium to flow across the membrane then sodium will 

flow in a direction such that the potential is pulled towards (𝐸Na). So, we are at minus 60 millivolts if 

you remember our (𝐸Na) is at plus 40 millivolts. So, sodium will flow inwards that is trying to pull the 

membrane potential towards plus 40 millivolts or this (𝐸Na). So, what that does is that that increases 

the voltage a little further because now positive sodium ions are going in. 

 

So, the voltage is further moved to the right I am exaggerating this in the plot, but it can move to the 

right and then so more sodium channels open and then more sodium comes in and this increases the 

voltage and more sodium channels open and goes on in a very fast time scale less than half a 

millisecond or so. So, what that does is that there is a shoot up in the voltage there is a small catch 

here which we will mention at the end that if you increase the voltage the the sodium activation 

gates reaches saturation that is all of them are open and by then the potassium channels have 

caught up that is they have started opening and there are lots of them are open because as you saw 

that the time constant curves are bell shaped. So, as the voltage moves to the right the potassium 

time constants are also decreasing. So, by the time all the ( 𝑚 ) gates have opened the potassium 

channels have all started to open and so the potassium conductance increases and so potassium 

channels being open would mean that the potassium ions will flow in such a manner that the 

membrane potential will be pulled towards (𝐸K) that is the reversal potential of potassium and so it 

will go towards the minus 80 millivolt. So, if we look at the voltage what happens is that you are at 

(𝑉rest) with that current injection there is a sudden shoot up in the voltage and then they drop down 

and by now essentially the ( ℎ ) −gates have all closed because they are the slowest ones they are all 

closed and so the sodium channels are inactivated that is ( ℎ ) is 0 and then briefly they after a 

period of time they will return the the all and the entire system would return to rest. 

 

So, here it is I have explained this very qualitatively this needs to be simulated to fully understand it 

and there is as I said there is something that we mean as threshold which I did not mention while 

describing the the behavior of action potential as we will show that indeed there is a particular value 

of voltage which needs to be crossed when the current injection is happening that particular voltage 



needs to be crossed only then there will be an action potential otherwise if the if it is the 

depolarization is not large enough it is going to come back down and not produce an action 

potential. So, that we will describe in later lectures how we model that phenomena or how we 

understand that phenomena. So, in short, we have the Hodgkin Huxley equations that can describe 

the formation of action potentials and we will then go into this how to analyze the Hodgkin Huxley 

system of equations to understand the behavior of the action potential in the next lectures. Thank 

you. 

 


