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Speed of Sound 

  

So in previous classes we have looked at thermodynamics fluid equations and then to a 

particular assumption Quasi-1D assumption where we consider that the properties of the flow 

like velocity pressure, density, temperature they remain constant across the cross-section of the 

flow. So that is a Quasi-1D assumption and then we had looked at conservation equations in 

the Quasi-1D framework. 

 

Now let us apply some of these principles. So first look at a very important characteristic of 

compressible flows that is the speed of sound. 
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So sound waves are very important when discussing compressible fluid flow. As we had 

discussed in previous classes including the flow regimes where it is the main mode of 

information transfer among different parts of the flow. So you have when we have low speed 

flows or subsonic flows and then these waves can travel all around carrying the information 

but once the velocity of the flow becomes greater than velocity of sound the information 

propagates only along certain directions. 

 



So now speed of sound being so important let us analyse the sound wave using 1D principles 

that we had just completed. So this wavy line represents the wave front of the sound as it is 

travelling from right to left so when as it is travelling to from right to left. Now in order to 

apply this we use the principle that if the body is moving or these waves are moving with 

uniform velocity it is having a certain velocity a then you can always transform the coordinates 

or transform and impose an opposite velocity in order to make the flow or make the wave front 

stationary. 

 

So you can give a velocity 𝑎 now that appears going from left to right. If you impose that then 

this wavy line front can be made stationary and then the steady flow in a equations can be 

applied on this wave front. So the equations for now this is a section which is 𝑎 in one 

dimension. So you consider the one dimensional flow where you have 𝜌𝑢 𝐴 is constant since 

𝐴 is constant you get 𝜌𝑢 is constant, 𝑢 is the uniform velocity and 𝑃 + 𝜌𝑢2 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 this 

is from momentum conservation. 

 

There is no heat addition or work done in these processes so you get ℎ +
𝑢2

2
𝑖𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 that is 

conservation of energy. So using these three principles let us look at how we can get to the 

speed of sound. Now as the wave passes over as sound it introduces a small change in the local 

static pressures, temperatures and densities as well as the speed. So that small change is 

represented by Δ𝑃, Δ𝜌, Δ𝑇 and the small change Δ𝑎. 
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Now we apply these conservation equations across the disturbance. So if you write the mass 

conservation equation you get that 𝜌𝑎 = (𝜌 + 𝑑𝜌)(𝑎 + 𝑑𝑎) just the conservation of mass this 

can be expanded and you apply the condition that when you have two small quantities 

𝑑𝜌 𝑎𝑛𝑑 𝑑𝑎 getting multiplied these are approximately equal to 0, they are negligible. So this 

when expanded you get 𝜌𝑎 + 𝑎 𝑑𝜌 + 𝜌𝑑𝑎 +  𝑑𝑎 𝑑𝜌. 

 

Now this factor is negligibly small so it can be removed while these two get cancelled from 

here. So you get the equation  a 𝑑𝜌 = − 𝜌𝑑𝑎 or 𝑎 can be written as –
𝜌 𝑑𝑎

𝑑𝜌
. So we have from 

the mass conservation equation we get this particular form of the equation or this particular 

formulation this will be useful ahead. Now we consider the momentum conservation across the 

wave front.  

 

So when you look at momentum consideration you have 𝑃 + 𝜌𝑎2 = (𝑃 + 𝑑𝑃) +

(𝜌 + 𝑑𝜌)(𝑎 + 𝑑𝑎)2. So now here you have to expand this formulation of this right hand side 

and in that the terms (𝑑𝑎)2 square is very small similarly (𝑑𝜌)(𝑑𝑎) they are also very small 

and you can neglect them.  
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So you get 𝑃 + 𝜌𝑎2 = (𝑃 + 𝑑𝑃) + 𝜌𝑎2 + 2𝑎𝜌𝑑𝑎 + 𝑎2𝑑𝜌 and you can also so from these 

terms this gets cancelled. Similarly this gets cancelled and you can use the equation here that 

𝑎 = −
𝜌 𝑑𝑎

𝑑𝜌
 and that can be substituted here and when you substitute that equation then you will 

get 𝑎2 =
𝑑𝑃

𝑑𝜌
.  



 

So when you combine these two equations what you get is that all these terms that is due to 

(𝑑𝑎)2, 2𝑎(𝑑𝜌)(𝑑𝑎) they are all very small and they can be neglected and you can use the term 

that you got from the previous equation that 𝑎 𝑑𝜌 =  −𝜌𝑑𝑎. So this is the equation or this is 

the term that we got from the previous equation and that can be applied over here there is a 

(𝜌)(𝑑𝑎) term here and it can be replaced by 𝑎 𝑑𝜌 and there will be a negative sign. 

 

So that this equation then forms – 𝑎2𝑑𝜌 + 2𝑎2𝑑𝜌 + 𝑎2𝑑 and you have a 𝑑𝑃 term here so this 

is how you get  that is equal to 0, so you get 𝑎2𝑑𝜌 = 𝑑𝑃 or 𝑎2 =
𝑑𝑃

𝑑𝜌
. So  once you get this so 

its this relates  the speed of sound to the gradient or to the derivative of pressure 
𝑑𝑃

𝑑𝜌
. Now in 

order to evaluate the speed of sound you should evaluate this derivative 
𝑑𝑃

𝑑𝜌
 but we know that 

we should determine the process by which the sound is actually travelling or the 

thermodynamic process involved in the travel speed of sound. 
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So now that one needs to determine the process when researchers were looking at it right from 

Newton he sort of said that sound wave propagates in air and when it propagates it does not 

change things to a great extent. And so he assumed that the temperature remains constant as 

the sound waves propagate through any medium. So he said that it is an isothermal process. 

 

If you consider an isothermal process then the corresponding thermodynamic equation is 𝑃𝑉 =

  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 this can be differentiated 𝑃𝑑𝑣 + 𝑣𝑑𝑃 =  0. In terms of density it will be 
𝑑𝑣

𝑣
  is 𝑣 is 



just 
1

𝜌
 you can substitute that and you can get 

𝑑𝑃

𝑑𝜌
 is nothing but 

𝑃

𝜌
 or you get 𝑎2 =

𝑃

𝜌
. But it was 

seen that this was not correct according to experiments there was a discrepancy with 

experiments. 
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And correction was provided later in the sense that since these processes are extremely fast it 

moves quite fast there cannot be any exchange of heat in order to have an isothermal process 

you need to exchange heat and the heat exchange is generally a slow process. So but speed 

with which some travels is quite fast and there is no time for such heat exchange to take place. 

 

So then the appropriate thermodynamic process is a reversible adiabatic process or that is an 

isentropic process. When you consider an isentropic process, then the relevant equation is 

𝑃𝑣𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and then if you differentiate this and get to 
𝑑𝑃

𝑑𝜌
 it is 𝛾

𝑃

𝜌
 or 𝑎2 =

𝛾𝑃

𝜌
  

. And if you can also couple this with the equation of state 𝑃 =  𝜌𝑅𝑇. 

 

Then you get 𝑎2 = 𝛾𝑅𝑇 so now here we come to the equation 𝑎 = √𝛾𝑅𝑇. Now remember in 

all these conversions we have assumed that the gas is a perfect gas and only in the case of 

perfect gases we can use these kinds of simplifications where we are saying gamma is 
𝑐𝑃

𝑐𝑣
 and 

so on. But the most general equation is actually 𝑎2 𝑖𝑠 (
𝜕𝑃

𝜕𝜌
)

𝑠=𝑐
; entropy is equal to constant. 

 

That is the correct thermodynamic process to be used and when you use that then this is the 

most general formulation for speed of sound. This is applicable in any scenario. While in 



specific to perfect gases you can simplify this to √𝛾𝑅𝑇 another equivalent formulation is using 

it is √
𝛾𝑃

𝜌
.  
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So we have done a bit of computation or a simple analysis to understand how the speed of 

sound varies with the temperature and what is a relevant equation to be used. This is; in a 

context of changes of 𝑐𝑃 𝑎𝑛𝑑 𝑐𝑣 vs temperature, increases to higher values and you can and 

these are all plotted and there is a comparison between using the formula 𝑎 = √𝛾𝑅𝑇 and 

determining 𝑎 by square root of this generic formulation that is at entropy equal to constant. 

 

This is done using computational tools and here you can see the plots and while for perfect 

gases which is represented by the blue line which is the perfect all through there is no difference 

between 𝛾𝑅𝑇 and 
𝑑𝑃

𝑑𝜌
. But when you bring in high temperature effects and there is other changes 

like chemical reactions happening then it can depart from such perfect behaviour and that 

departure is seen by these other lines there is a difference between 𝛾𝑅𝑇 and 
𝑑𝑃

𝑑𝜌
. . 

 

So, depending on the situation and the problem under consideration while in majority of the 

cases that we do here we will be dealing with perfect gases and this formulation holds good. 

But if situations arise then we have to go back to the more fundamental equation which is this 

one which is the square root of (
𝜕𝑃

𝜕𝜌
)

𝑠=𝑐
.  
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Now speed of sound is not just in gaseous medium it is also for solids and liquids and there the 

relevant property is the bulk modulus basically how changes of density with pressure that is 

what is the relevant property? So the speed of sound is related to the bulk modulus and the 

density so square root of bulk modulus by density. And you can see that for solids it will be 

very high the speed of sound can be very high for four thousand meters per second in steel 

while for water its about 1.5 𝑘𝑚/𝑠 𝑜𝑟 1500 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1500 𝑚/𝑠 in water. While for air at 

normal temperatures the speed of sound is around 347 𝑚/𝑠.  
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So let us just do a simple numerical based on the speed of sound. So here calculate the 

percentage change in speed of sound at 11 𝑘𝑚 altitude when compared to sea level. Ambient 

temperatures are 288 𝐾 𝑎𝑛𝑑 216.5 𝐾 at sea level and at 11 𝑘𝑚 altitude respectively. So if an 



aircraft flies at 333.3 𝑚/𝑠 what happens to its mach number as the altitude changes as gains in 

altitude. 

 

So let us look at this so what is given here so this is air so air has 𝛾 is 1.4 and generally R is 

taken as 287 
𝐽

𝑘𝑔𝐾
 and you have this at sea level and at 11 𝑘𝑚 of the altitude temperature is 

given at sea level is 288 K here it is 216.5 K and the  formula is √𝛾𝑅𝑇. So, one can find the 

speed of sound here. So 𝑎 is in this case first case which is 288 𝐾 this is √{1.4 ∗ 287 ∗ 288) 

is 340.17 𝑚/𝑠. 

 

While at this case at 11 𝑘𝑚 this is the same formula you have to substitute 𝑇 as 216.5 𝐾 and 

you will get 294.94 𝑚/𝑠. So what happens to mach number? Mach number is 
𝑉

𝑎
 and now you 

can see that in this case the Mach number is 
333.3

340
 which is close to 0.98. While on this side at 

11 𝑘𝑚 the mach number you can see that the speed with which the aircraft flies is greater than 

the speed of sound. 

 

And that is the Mach number here is 1.13. Now the percentage change in speed of sound as the 

there is an increase in the altitude to 11 km is 
294−340.17

340.17
𝑥100 and this is change is about 13.3% 

there is a 13.3% decrease in the speed of sound. So as the flight moves to higher altitudes 

temperatures drop and there is a possibility that the mach number of the flight can change. 

 

So with this we end the discussion on speed of sound we can now look at few numerical 

examples in the next class and that is the end of this class. 

 

 

 


