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Lecture 07 

Flow equations – Differential Form 

  

In the previous class we have were looking at flow equations in a particular form which is 

known as the integral form of flow equations the control volume approach. And in this class 

we will look at another kind of analysis and the kind of equations of the same conservation 

equations now in differential form.  
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There are really two kinds of approaches looking at analyzing fluid flows. In the control volume 

approach or the integral forms we are really looking at analyzing the fluid flow through a 

certain system which is a control volume. And we look at how changes happen within the 

control volume due to fluxes which happen across the control surfaces. So you have control 

surfaces and control volume and we write the mass momentum and energy balance in an 

integral form. 

 

The mass conservation written in for this control volume this control volume is 𝜌𝑑𝜐 which is 

this is the total mass of the control volume. If there are any changes to that mass it should have 

happened due to fluxes around the control surface which is 𝜌�⃗� ⋅ 𝐴  so 𝜌𝐴�⃗� ⋅ �̂� where �̂� is a 



normal. So this is really the flux of mass. And since the total mass it never changes this is equal 

to zero.  

 

So this is the conservation of mass. Similarly if you consider the conservation of energy 

conservation of momentum 𝜌�⃗�  is the momentum then momentum within the control volume 

if it has to change it is due to changes due to the 𝜌�⃗�  which is the momentum and �⃗� (�⃗� ⋅ �̂�)𝑑𝐴 

which is a momentum flux and this can be due to various forces they can be due to the body 

forces which is termed as just body force 𝑓𝑏⃗⃗  ⃗. 

 

And this is integrated over the volume. The other is surface force which is here mainly the 

pressure forces and shear forces and 𝑃�̂�𝑑𝐴. So is just the statement of some shear force the 

statement of second law of Newton that change in momentum is equal to the sum of forces that 

come on to the body. And then the first law of thermodynamics which is 
𝜕𝑈

𝜕𝑡
 changes to energy 

which is total energy is internal energy plus summation of kinetic energy and the potential 

energy.  

 

That over a control volume is actually due to the fluxes of energy across the surface, (�⃗� ⋅ �̂�)𝑑𝐴 

over the control surface is can be due to some heat that is heat transfer and it can be also due 

to the work done. And here work done can be due to body forces if there are body forces then 

the work done on those body forces is 𝑓𝑏⃗⃗  ⃗ ⋅ �⃗� 𝑑𝜐 �⃗�  is the velocity and some shaft work or shear 

work. 

 

So this is the statement of the energy equation which is nothing but statement of first law of 

energy first law of thermodynamics. So this is the integral form of a equations and we will use 

them significantly in the course of the work. The other form is here we do not go into the details 

of the flow field what is happening at each point in the flow. But if you want to know that is 

important to know that to look at fluid flow phenomena in compressible flows then we should 

really approach every point. The way to go about doing that is through differential equations.  
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So we will just look at the differential forms the same three laws the three conservation laws 

we will express in differential form. When expressing them in differential form we have to 

understand the differences in approaching them. Usually when you look at differential forms 

they are looked at you are looking at a particle and you follow the particle and then you say 

how is the velocity changing the changes in velocity is related to flow to the forces as you 

follow the particle that kind of an approach is Lagrangian approach in terms it is called a total 

derivative or a material derivative. 

 

But if you look at fluid flows there are so many particles there are so many such particles would 

you follow all of them individually? So in fluid flows the other approach is usually look at a 

particular point in the flow field and then see how velocities vary within that point and so on 

that is known as the Eulerian frame of looking at things. So these two frames can be represented 

or these two frames can be related to each other through the definition of the total or material 

derivative consisting of a spatial a temporal part and a spatial part. 

 

So this is the Eulerian representation while 
𝐷

𝐷𝑡
 which is on the left hand side is a Lagrangian 

representation, 
𝐷

𝐷𝑡
 total derivative or material derivative is equal to this form where �⃗� ⋅ ∇⃗⃗  is 

actually for a Cartesian frame it is 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
 this term comes out to be like this. So, if 

it is say you are talking about a particular velocity u component of velocity it will become 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
. 

 



Or if it is temperature it becomes say 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
, so it comes so on. So this term gets 

expanded into such a form. So where del operator, ∇⃗⃗  is the usual gradient operator. So this form 

is important so lot of vector calculus and so on are important over here. 
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So you should just revise them if you haven't if you need to again so if you consider a very, 

very small fluid parcel a very small fluid element. And we are going to do analysis on such a 

small fluid element which is infinitesimally small. The mass inside that particular element is 

nothing but 𝜌𝜐. So what we should say is that mass is constant, mass does not change so 
𝐷𝑚

𝐷𝑡
=

0. 

 

So as you follow that particular fluid particle or fluid parcel so 
𝐷𝑚

𝐷𝑡
= 0. So 

𝐷(𝜌𝜐)

𝐷𝑡
= 0 which is 

you can then use the rules of differentiation to find this out. Which consists of changes to 

density and changes to volume and the changes to volume can be related to how individual 

these particle this fluid volume changes due to velocity gradients. It is so in x-y-z directions 

the changes are related to (
𝜕𝑢

𝜕𝑥
) , (

𝜕𝑣

𝜕𝑦
) , (

𝜕𝑤

𝜕𝑧
). 

 

So on an average the change of volume 
1

𝜐

𝐷𝜐

𝐷𝑡
=

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 this is known as the dilatation of 

that fluid parcel. So ∇⃗⃗ ⋅ �⃗�   and therefore we can say that the change in mass should be equal to 

change in density 
𝐷𝜌

𝐷𝑡
 or it can be due to dilatation ∇⃗⃗ ⋅ �⃗� . So, it the total change in mass is anyway 

zero so we get this particular equation 
𝐷𝜌

𝐷𝑡
+ 𝜌(∇⃗⃗ ⋅ �⃗� ) = 0. 



 

And 
𝐷𝜌

𝐷𝑡
 can be expanded 

𝜕𝜌

𝜕𝑡
+ �⃗� ⋅ ∇⃗⃗ 𝜌. So the taken together you can also write it in this form 

𝜕𝜌

𝜕𝑡
+ ∇(𝜌�⃗� ) = 0. For steady flow ∇(𝜌�⃗� ) = 0. Now this is a compressible fluid flow so density 

is a variable it is not a constant anymore. So this is conservation of mass. 
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Now let us go and look at momentum conservation. So here now momentum is mass multiplied 

by the velocity. Velocity is a vector momentum is a vector so we are dealing with vector 

equations. If you are looking at Cartesian coordinates this involves three components 𝑢𝑖̂ +

𝑣𝑗̂ + 𝑤�̂� so three different velocity components. And similarly forces also in three different 

directions. These forces can in general be body forces or surface forces. 

 

The body force is usually due to gravity 𝜌𝑔 . Now if you consider left hand side you have 
𝐷

𝐷𝑡
 of 

momentum which is mass multiplied by velocity, 𝑚�⃗�  but already we know there is a 

conservation of mass applied here implied here. Therefore you get this term it comes out to be 

𝜌
𝐷�⃗⃗� 

𝐷𝑡
. So now what are the surface forces? so left hand side is nothing but the acceleration terms 

𝜌
𝐷�⃗⃗� 

𝐷𝑡
. 

 

While the right hand side is due to surface forces and body forces. So what are these surface 

forces? 
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If you take any small volume it has let us take this Cuboidal volume it has different surfaces. 

And at each surface you will have forces that occur both in the same directions. For example 

if this is the x direction then you have forces along x direction and you have forces along y 

direction as well as this direction at a particular point. So if you take any particular point and 

have different surfaces you have forces along different directions. 

 

Therefore this particular if you divide by the area, force divided by area, is stress. So at a 

particular point you can have a state of stress and that is defined. The stress is actually a tensor 

because at every surface you can have forces in all other in every direction. So 𝜏𝑥𝑥 represents 

if you consider a stress 𝜏𝑥𝑥 is actually a force along x-direction 𝐹𝑥 over an area, which is an 

area and the normal of this area is also along x-direction. 

 

So normal is also along x-direction. So, you can look at the coordinate system here and 

understand them. So if you consider a force along x-direction it is composed of several different 

stress components. One is of course the stress it is due to the area with having a normal x and 

force along x. But it can also be due to a stress where it has a normal is at y but force is along 

x. So this component is the normal component normal stress is a normal stress it is acting 

perpendicular to the area.  

 

While this 𝜏𝑦𝑥 and 𝜏𝑧𝑥 which are all x components of velocity where the areas are perpendicular 

to y and z these are tangential components so these are shear stresses. So, shear stresses. Now 

these components of forces in general can vary across different areas so if you take the effective 



force which is from one section to the other section there is a change which is so 𝜏𝑥𝑥 +
𝜕𝜏𝑥𝑥

𝜕𝑥
𝑑𝑥 

is the change as you go from 𝑥 to 𝑥 + 𝑑𝑥. 

 

Similarly 𝑦 to 𝑦 + 𝑑𝑦 net force will be the difference between these two forces which is 
𝜕𝜏y𝑥

𝜕y
𝑑y 

similarly for every other force. So, just the 𝐹𝑥 that force along x direction is a summation of 

different components of the stress tensor. So 
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏y𝑥

𝜕y
+

𝜕𝜏z𝑥

𝜕z
. So similarly in the vector 

equation which is the momentum equation which has both x all x, y and z components in 

general the surface force is actually composed of 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧. 

 

And they in turn are composed of these derivatives. And so divergence of the stress tensor 

which is represented over here is the surface force in general. 
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Now what is the particular stress? How is it related to the velocity gradients is what we have 

to see. And we are considering a Newtonian fluid and in that fluid the stress is directly 

proportional to the strain rate shear strain rate or strain rate and the strain rates are given by the 

velocity derivatives. So this is the Newtonian flow or Newtonian fluid. So therefore you know 

that 𝜏𝑖𝑗 or this stress is the viscosity times this gradient of velocities 
𝜕𝑢𝑗

𝜕𝑥𝑖
. 

 

So if you take for example 𝜏𝑥𝑦 this will be 𝜇 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) so it is a general representation where 

you can replace 𝑖 𝑗 by 𝑥 𝑦 and then the corresponding coordinates you can get it. But if you 



look at the normal stress it consists of a pressure term pressure is a normal force and it consists 

of another part which is related to dilatation and where 𝜆 is known as bulk viscosity and you 

have the normal stress term 2𝜇
𝜕𝑢

𝜕𝑥
. 

 

So now we can plug these different forms of the stress tensors into the equations that we had 

just formed earlier and we get terms related to pressure, pressure gradient 
𝜕𝑃

𝜕𝑥
 in  

this is the normal stress terms in u directions and shear stress term in y and z direction. This is 

the general form of equations for momentum equation similarly in v and in w coordinates. 

 

This is nothing but Navier Stokes equations but in this equation. Now density is a variable 𝜌 is 

a variable not only is 𝜌 a variable 𝜇 which is the viscosity is also a variable it is a function of 

temperature. 
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So in general you can write so read 𝜌
𝐷�⃗⃗� 

𝐷𝑡
 where �⃗�  is a vector is the body force 𝜌𝑔  +∇ ⋅ 𝜏𝑖𝑗,      

∇ ⋅ 𝜏𝑖𝑗 in general the divergence of the stress tensor. This is the surface force, surface force and 

with the definitions of the stress tensor related to the velocity gradients we can write them in 

general here that 𝜌
𝐷�⃗⃗� 

𝐷𝑡
 is 𝜌𝑔  and this is gradient of pressure and then the other stress terms. 

 

So for incompressible flow when you consider incompressible flow in general ∇⃗⃗ ⋅ �⃗� = 0. So 

all these terms related to ∇⃗⃗ ⋅ �⃗�  drop off so you get a simplification with this 𝜇∇2�⃗�  where 𝜇 is 

also taken to be a constant if you consider in general the inviscid equation where you do not 



consider viscous forces. So, this completely drops off viscous forces all viscous forces drops 

off. 

 

This is now 𝜌
𝐷�⃗⃗� 

𝐷𝑡
= 𝜌𝑔 − ∇⃗⃗ 𝑃, here 𝜌 is still a variable. So this is Euler equation where 𝜌 is a 

variable this is an incompressible flow equation where 𝜌 is taken as a constant. So these are 

various forms of the momentum conservation equation the most general form is represented 

here and expanded over in this equation.  
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Now if you consider the energy conservation it comes back to first law of thermodynamics 

change in energy is related to heat added and work done on the system. So here it is given 

negative sign so it is a work done by the system so 
𝐷𝑄

𝐷𝑡
−

𝐷𝑊

𝐷𝑡
 energy is composed of internal 

energy, kinetic energy and potential energy. So total energy is 𝜌 multiplied by this particular 

thing. 
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Now we have to relate how heat gets into the system how work is getting done on the system. 

So heat coming into the system is getting transferred by conduction is Fourier’s law of 

conduction −𝑘∇⃗⃗ 𝑇 and you have to consider different surfaces how heat gets transferred the net 

rate of flow into the system is nothing but gradient of this 𝑘∇⃗⃗ 𝑇 which is ∇⃗⃗ ⋅ 𝑘∇⃗⃗ 𝑇. 

 

So this is the formulation for the net heat transfer that happens per unit volume. So  

𝐷𝑄

𝐷𝑡
= ∇⃗⃗ ⋅ 𝑘∇⃗⃗ 𝑇   and here we are assuming there is no heat being generated. 
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Now; what about work done in a similar manner as before we will be considered heat transfer 

we are checking the work done. And work done you knows the force multiplied by velocity or 

if 𝑓 ⋅ �⃗�  is the work done. So if you take 𝑓𝑥 the force, force in x direction it has components 



𝜏𝑥𝑥, 𝜏𝑥𝑦 and 𝜏𝑥𝑧 and you have to multiply it by the corresponding velocities 𝑢, 𝑣 𝑎𝑛𝑑 𝑤 you 

get 𝑊𝑥 work done on the back, work done by the stresses on the x on one particular face. 

 

Consider the other face, net rate of work done 
𝐷𝑊

𝐷𝑡
= −𝑑𝑖𝑣 𝑊 = ∇⃗⃗ ⋅ (�⃗� ⋅ 𝜏𝑖𝑗). Now this can be 

expanded by vector identities and you can get two terms one having a �⃗� ⋅ (∇⃗⃗ ⋅ 𝜏𝑖𝑗) the other 

one 𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
.  
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So now if  you get these terms and this is related this can be extracted from the momentum 

equation 𝜌
𝐷�⃗⃗� 

𝐷𝑡
− 𝜌𝑔  while this term still remains. So now you put all of them together 

𝜌 (
𝐷𝑒

𝐷𝑡
+ 𝑉

𝐷𝑉

𝐷𝑡
− 𝑔 ⋅ �⃗� ) because (

𝑉2

2
) is differentiated 

𝐷

𝐷𝑡
 is 𝑉

𝐷𝑉

𝐷𝑡
 while you had the term 𝑔 ⋅ 𝑟  

where 𝑟  was the the displacement vector. So 
𝑑𝑟 

𝑑𝑡
 is �⃗�  so now you find these terms here 𝑉

𝐷𝑉

𝐷𝑡
 and 

this term they are common and they get cancelled off. 

 

And you are left with only the heat transfer terms and that is conduction heat transfer term and 

this particular term 𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
 . 
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This 𝜏𝑖𝑗 consists of pressure term and the terms due to the velocity gradients. So they can be 

separated the pressure term comes out as 𝑃 ∇⃗⃗  ⃗ ⋅ �⃗�  while you are left with all velocity gradients 

and this term is known as the viscous dissipation term. This is all the dissipation that happens 

due to viscosity and velocity gradients. And you can simplify the pressure term use the 

continuity equation where  ∇⃗⃗  ⃗ ⋅ �⃗�  can be represented in terms of 
𝐷𝜌

𝐷𝑡
. 
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And therefore this pressure term comes within the brackets (𝑒 +
𝑃

𝜌
) is nothing but enthalpy, ℎ. 

So finally from the conservation energy conservation term we get the equation for change in 

enthalpy 𝜌 (
𝐷ℎ

𝐷𝑡
) is equal to changes in pressure 

𝐷𝑃

𝐷𝑡
+ ∇⃗⃗ ⋅ (𝐾∇⃗⃗ 𝑇)  + Φ  this is the conduction 

heat transfer and viscous dissipation term. So, Φ , this is viscous dissipation. This is first law 



of energy, energy conservation this is enthalpy pressure and heat that is getting transferred and 

viscous dissipation. 

 

So this now forms the three forms of equations which is conservation of mass momentum and 

energy. 
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Along with you have to apply relevant boundary conditions the appropriate boundary condition 

is that at the fluid solid interface the velocities of fluid and solid are the same which is no slip 

condition. And temperature you can when looking at the temperature boundary condition you 

can either be that the temperature at the fluid and solid are the same no temperature jump across 

them. 

 

Or if you are solving you can apply either of the two cases one is no temperature jump or 

equality of heat flux at the boundary. They are two different kind of problems either or the of 

them have to be applied so if you apply. The appropriate boundary conditions with the 

equations and along with this you need of course the equation of state 𝑃 =  𝜌𝑅 𝑇 and some 

function of for the viscosity and thermal conductivity. 

 

If you get them then you can solve these equations but they are extremely complex and non-

linear so there are no analytical forms they are usually solved in a numerical form. So this is 

another kind of analyzing this fluid flows and this is done using differential equations. So it is 

called the differential form. So we have integral forms and differential forms of equation. The 

first kind of analysis that we will do is always using the integral forms. 



 

So we can get to know what is happening within a certain control volume due to fluxes across 

them and we can get simple relations between what is happening to the fluid flow. So we will 

proceed with a specific kind of analysis with certain assumptions known as Quasi-1D 

assumptions in the coming classes, thank you. 

 

 

 


