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Small   Perturbation   Theory   -II     
  

So,  now  we  are  looking  at  solving  the  entire  flow  field  in  that  context  we  are  looking  at                    

inviscid  irrotational  flows  and  we  are  look  specifically  isentropic  flows.  So,  then  in  the                

previous  class  we  had  looked  at  when  we  consider  irrotational  flows  we  know  that  the                 

velocity   can   be   expressed   as   the   gradient   of   a   scalar   potential   because   it   is   irrotational     

or    𝛻    x     =0    (Refer   Slide   Time:   00:57)   V
→

 

  

So,  V  can  be  expressed  as  gradient  of  a  potential.  And  we  have  looked  at  the  velocity                   

potential  equation  in  its  full  form  in  three  dimensions.  It  is  a  nonlinear  equation.  But  when                  

specifically   taken   in   along   2   dimensions   then   we   looked   at   it   was   it   specifically,   

     +     =0   1( −  a2
u2 ) Φxx   1( −  a2

v2 )Φyy − Φa2
2uv

xy  

Of  course  u  =   ,  and  v=   .  And  we  looked  at  the  behaviour  of  this  equations  we  found      ∂x
∂Φ     ∂y

∂Φ              

that   the   determinant   is   D   =     -   4   AC   was   turned   out   to   be   .   B2  M 2 − 1   

  

Therefore  when  you  consider  subsonic  flows  determinant  is  less  than  0.  So,  when  M  is  less                  

than  1  therefore  it  behaves  in  an  elliptic  manner  and  determinant  is  greater  than  0  when  M  is                    

greater  than  1  for  supersonic  flows  it  behaves  in  hyperbolic  manner.  So,  this  distinction                

should  be  really  appreciated  when  you  look  at  solving  subsonic  flow  problems  and  solving                

has   supersonic   flow   problems   and   we   will   come   to   it   again   and   again.   



  

But  now  our  question  is,  is  there  any  approach  by  which  see  this  in  its  full  form  it  is  a  non                       

linear  equation  and  it  has  to  be  solved  numerically  but  can  we  get  some  solutions  for  certain                   

specific   cases   a   normal   approach.   

(Refer   Slide   Time:   03:02)   

  

In  such  cases  of  looking  at  non  linear  equations  is  to  see  if  it  can  be  linearized  and  this                     

particularly  useful  in  cases  where  you  have  thin  bodies  in  a  mean  flow  for  example  an  airfoil                   

in  a  mean  flow  in  a  uniform  flow  .  So,  this  is  a  very  important  problem  for  aerodynamics  and                     

it  can  be  an  airfoil  which  is  placed  in  a  uniform  flow.  Now  this  airfoil  actually  changes  the                    

flow   around   it   by   small   values   which   is   ,     , .    u′  v′ w   ′   

So,  they  are  called  as  perturbations  to  the  uniform  flow .  So,  this   is  along  x  direction            V ∞    V ∞      

which  is  along  u.  So,  u  =  ,  while  v  =   and  w  = .  So,  now  we  look  at,  can  we         u   V ∞ +  ′      v′     w′         

take  this  approach  and  get  some  useful  results  for  the  case  of  subsonic  flows  and  then  how  is                    

the   velocity   potential   written.   So,   we   define   a   perturbation   velocity   potential   such   that     

  

   =      ,   =         =   .    Where   is   perturbation   velocity   potential   u′ ∂x
∂ϕ  v′ ∂y

∂ϕ  w′
∂z
∂ϕ  ϕ  

Then   the   velocity   potential   in   the   x   direction   actually   becomes,   

 x   Φ = V ∞ ϕ  +   

  So,   you   can   see   that,   

u   =     =      =     +  u  V ∞ +  ′
∂x
∂Φ V ∞ ∂x

∂ϕ  

v   =   =       ;   w   =     =   .    v′ ∂y
∂Φ = ∂y

∂ϕ  w′
∂z
∂Φ = ∂z

∂ϕ   

  So,   you   can   just   differentiate   it   and   it   will   be   you   can   easily   see   that   because   



   =      ,   =         =   .    u′ ∂x
∂ϕ  v′ ∂y

∂ϕ  w′
∂z
∂ϕ   

So,   now   you   can   define,   

  =     ;      =     ;      =     ϕxx ∂x2
∂ ϕ2

 ϕyy ∂y2
∂ ϕ2

 ϕzz ∂z2
∂ ϕ2

 

  So,   now   we   are   considering   small   perturbations.     

(Refer   Slide   Time:   05:32)   

  

So,  let  us  go  back  to  the  velocity  potential  equation  itself  and  then  substitute  these                 

perturbation  potentials  into  the  velocity  potential  equation.  So,  then  if  you  substitute  them               

you   have,   

 +  +   a  ( 2 − V  ( ∞ + ∂x
∂ϕ)2 ) ∂x2

∂ ϕ2

   a( 2 − ( ∂y
∂ϕ)2) ∂y2

∂ ϕ2

  a( 2 − ( ∂z
∂ϕ)2) ∂z2

∂ ϕ2

−  

=0   2 V  ( ∞ + ∂x
∂ϕ) ∂y

∂ϕ ∂ ϕ2

∂x∂y − 2 V  ( ∞ + ∂x
∂ϕ) ∂z

∂ϕ ∂ ϕ2

∂x∂z − 2 ∂y
∂ϕ

∂z
∂ϕ ∂ ϕ2

∂y∂z  

So,  now  this  entire  equation  is  the  perturbation  velocity  potential  equation  ,you  can  write  it  in                  

terms  of  velocities  ,  ,   , ,to  get  better  insight.  Now  we  also  get   square  here  we       u′   v′  w   ′         a2     

have   to   relate     square.   So,   for   that   we   use   the   approach   that   total   enthalpy   is   constant.   a2   

  =     =     h∞ +  2
V ∞

2
h +  2

V 2
h +  2

V + u + v +w( ∞ ′)2
′2 ′2

  

This   is   the   way   it   is   approached.   

They  can  be  written  in  terms  of  acoustic  speeds.  This  is  something  we  did  early  on  in  gas                    

dynamics   in   the   early   chapters.   So,   it   is   written   in   terms   of   that,   

  +     =     +    a∞2

γ 1− 2
V ∞

2 a2

γ 1− 2
V + u + v +w( ∞ ′)2

′2 ′2
 

So,  this  equation  for  is  substituted  in  the  main  equation  which  is  the  full  perturbation      a2            

velocity   potential   equation.   
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So  if  you  do  that  and  collect  various  terms  and  rearrange  them  and  collect  various  terms  then                   

you   get   this   particular   form   which   is     

+ +   =     1 M( −  ∞
2) ∂x

∂u′
∂y
∂v′

∂z
∂w  ′         M∞

2 (γ )[ + 1  u′V ∞
+   ( 2

γ+1 u′2

V ∞
2 )    ( 2

γ 1−
V ∞

2
 v +w′2 ′2 )  ] ∂x

∂u′  

 +   + M∞
2 (γ )[ − 1  u′V ∞

+    ( 2
γ+1 v′2

V ∞
2 )    ( 2

γ 1−
V ∞

2
 u +w′2 ′2 )  ] ∂y

∂v′   

  + M∞
2 (γ )[ − 1  u′V ∞

+    ( 2
γ+1 w′2

V ∞
2 )    ( 2

γ 1−
V ∞

2
 u +v′2 ′2 )] ∂z

∂w  ′  

  + M∞
2  [ v′

V ∞
1( + u′

V ∞)( ∂y
∂u′ + ∂x

∂v′)  +  w′V ∞
1( + u′

V ∞)( ∂z
∂u′ + ∂x

∂w′) +  
V ∞

2
v w′ ′ 1( + u′

V ∞)( ∂y
∂w′ + ∂z

∂v′)]    

  

Now  this  is  a  full  equation,  full  exact  equation  for  irrotational  isentropic  flow  in  terms  of                  

perturbation  velocity  potential.  But  Now  what  we  have  to  do  is  simplify  this  equation  by                 

considering  an  analysis  where  we  see  how  which  of  them  are  really  important  because  you                 

have   ,     , .   u′  v′ w   ′  

(Refer   Slide   Time:   08:37)   



  

And  what  we  say  is  they  are  small  perturbations  that  mean  they  are  small  if  you  consider                   

squares  or  multiples  of  .  So,  all  these  parameters  are  even      , ,  , , , u′V ∞
 v′V ∞

 w′V ∞
u′2

V ∞
2

v′2

V ∞
2  w′

2

V ∞
2        

smaller.  So,  if  you  consider  such  order  of  magnitude  analysis  for  subsonic  flow  and                

supersonic  flow  not  in  between  not  in  the  range  of  transonic  flows  then  you  find  that  the                   

various  terms  that  are  there  on  the  right  hand  side  are  very  small  in  comparison  to  the                   

corresponding   terms   on   the   left   hand   side.     

  

So,  the  left  hand  side  becomes  important.  So,  you  have  these  various  terms,  , ,  .               ∂x
∂u′  ∂y

∂v′  ∂z
∂w  ′  

So,  these  terms  if  you  take  a  look  at  them  the  order  of  these  are  small  in  comparison  to  the                      

left  hand  side  which  is  , ,   because  they  are  getting  multiplied  by  various  small       ∂x
∂u′  ∂y

∂v′  ∂z
∂w  ′          

quantities.     

(Refer   Slide   Time:   09:51)   



  

So,  if  you  consider  such  an  approach  then  we  find  that  this  perturbation  velocity  potential                 

reduces   down   to,   

+ +   =   0   1 M( −  ∞
2) ∂x

∂u′
∂y
∂v′

∂z
∂w  ′  

which  is  much,  much  simpler  and  not  only  is  it  simpler  it  is  also  linear  in  terms  of  if  you  now                       

put  back  the  velocity  potential,   is  a  constant  for  a  given  problem.  So,  now  this  is  a  linear       M∞               

equation.   So,   this   is   a   linearized   perturbation   velocity   potential   equation.   

So,  this  is  applicable  for  very  small  perturbations.  So,  perturbations  are  small  that               

corresponds  to  that  airfoils  are  thin  and  similar  such  arguments  and  it  is  for  subsonic  and                  

supersonic  flows  that  is  transonic  flow  is  excluded.  In  one  of  the  conditions  you  also  say  that                   

for  mach  numbers  which  are  less  than  5  which  is  that  is  it  is  in  supersonic  flow  but  not  so,                      

high   speed   that   you   can   consider   it   as   hypersonic   flow   then   changes   in   V   is   also   small.   

  

So,  that  means  hypersonic  flow  is  also  excluded.  So,  if  you  consider  only  subsonic  flow  and                  

supersonic  flow  then  the  linearized  velocity  potential  equation  must  hold  good.  So,  it  should                

hold   good.     

(Refer   Slide   Time:   11:33)   



  

So,  now  we  can  see  how  this  can  be  analyzed  for  subsonic  flow.  Before  going  there  what  we                    

really  are  interested  if  you  consider  an  airfoil  is  how  does  pressure  change  over  the  airfoil.                  

So,  that  from  such  an  information  we  will  be  able  to  gather  information  on  the  lift  or                   

aerodynamic   coefficients.   So,   we   really   need   to   know   what   is   the   coefficient   of   pressure   ?     

 CP = P  P− ∞

ρ V2
1
∞ ∞

2  

Now   if   you   take     out   of   this   it   will   become   ,  P ∞  

 CP =
ρ V2

1
∞ ∞

2

P  1∞( P
P∞− )  

  

Use   the   fact   if   you   multiply   and   divide   by   γ    then   you   have,   

  

 CP =
γM∞

2

2  1( P
P∞− )  

  

Now  can  we  express   in  terms  of  the  velocity  potentials  or  perturbation  velocity  potential      P
P ∞            

then   we   will   get   Cp   in   terms   of   the   linearized   theory.     
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So,   for   this   we   can   use   again   the   total   enthalpy   is   constant,     

  =     h∞ +  2
V ∞

2
h +  2

V 2
  

T   +      =       →   T-     =    V 2

2Cp T ∞ +  V ∞
2

2Cp T ∞
γ 1−
2γR

V  V∞
2− 2

 

1   =     =        T
T  ∞ − 2

γ 1−
γRT  ∞

V  V∞
2− 2

2
γ 1−

a  ∞2
V  V∞

2− 2
 

  

  v  V 2 =  (V u )∞ +  ′ 2
+  ′2 + w′2   

  

So,   if   you   substitute   that   and   you   look   at,   

1   =     =        T
T  ∞ − 2

γ 1−
γRT  ∞

V  V∞
2− 2

2
γ 1−

a  ∞2
2u V +u + v +w′ ∞ ′

2
′
2

′2  

So,   now   we   know   that   it   is   a   isentropic   flow   

  =    P
P  ∞  ( T

T  ∞ )
γ

γ 1−  

  

   =    P
P  ∞

 1   ( −  2
γ 1−

a  ∞2
2u V +u + v +w′ ∞ ′

2
′
2

′2)
γ

γ 1−

 

  

   =    P
P  ∞  1   M  ( −  2

γ 1− ∞
2 [ 2u′

V  ∞ +  a  ∞2
u + v +w′2 ′

2
′2 ])

γ
γ 1−
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So,   now   this   entire   term   the   complete   term   can   be   written   as   an   epsilon.   

ε    =     M   2
γ 1− ∞

2 [ 2u′
V  ∞ +  a  ∞2

u + v +w′2 ′
2

′2 ]  

 Now  what  we  are  saying  is  that  this  is  small  perturbation.  So,   , all  of  them  are  very               v′
V  ∞   u′

V  ∞      

small   similarly   their   squares   are   also   very   small.   Therefore,   

  =    P
P  ∞

(1  ε)−  
γ

γ 1−  

  

 So,  this  can  be  expanded  and  we  are  considering   square  and  higher  terms  they  are  very            ε         

small   they   are   negligible.   You   can   neglect   those   terms   and   you   can   get   it   only   in   terms   of   .   ε   

   =   1   -    P
P  ∞

 εγ
γ 1−  

  

Now  we  know   in  terms  of  the  perturbation  potentials  perturbation  velocities  and  .     P
P  ∞

          M∞
2  

Now   this   can   be   substituted   in   Cp   ,   

 CP = γM∞
2

2 1    M  + +…  1( − 2
γ

∞
2 [ 2u′

V  ∞ a  ∞2
u + v +w′2 ′

2
′2] − )

 

  

   CP =− 2u′
V  ∞  

So,  for  a  linearized  coefficient  of  pressure  can  be  just  expressed  in  terms  of  the  velocity                  

perturbation  potential.  So,  this  is  an  important  result  that  comes  out  of  this  analysis  this                 

enables   a   certain   way   to   solve   the   equations.     

(Refer   Slide   Time:   16:40)   



  

So,  this  is  valid  for  small  perturbations  any  small  perturbations  and  it  is  valid  both  for                  

supersonic   and   subsonic   flow.     

(Refer   Slide   Time:   16:54)   

  

Now  let  us  look  at  subsonic  flow  in  particular  or  a  thin  airfoil  at  small  angle  of  attack.  So,                     

then  your  velocity  potentials  or  are  small  perturbations  are  small.  It  is  an  inviscid  flow.  So,                  

the  appropriate  boundary  condition  is  that  the  flow  is  tangential  to  the  shape.  So,  if  you  know                   

the  shape  of  the  airfoil  y  =  f(  x)  then  the  tangent  is  and  the  flow  at  the  surface  should  be              df
dx          

tangent   to   it   i.e.   =   tan   θ   dfdx = v′
V +u   ∞ ′  

So,   now   it   is   very,   very   small.     

  



So,  we  say  tan  θ  is  approximately  equal  to  θ  which  is  equal  to  .  Also,  we  also  use  the  fact                df
dx        

that     is   much   smaller   than     therefore   you   can   express     and     .    u′ V ∞
df
dx =  v′

V   ∞
 v′ = ∂y

∂ϕ   

 V∂y
∂ϕ =  ∞

df
dx  

 So,  this  is  an  appropriate  boundary  condition  to  be  put  along  the  walls  for  the  linearized                   

theory.     

  

Now   if   you   take   the   equation   in   2   dimensions,     

   =0   ϕ ϕ  β2
xx +  yy  

 β =  √1 −M∞
2  

So,  the  idea  is  can  we  transform  this  equation  to  something  that  we  already  know  ,we  know                   

solutions  already  exist.  So,  in  the  transformed  coordinates,  so,  this  is  you  are  applying  a                 

transformation   to     

ξ    =   x   ;   η   =    yβ  

So,  now  what  we  have  to  do  we  have  to  convert  this  equation  by  doing  differentiation  along                   

those.     

(Refer   Slide   Time:   19:18)   

  

So,  now   is  expressed  in  (ξ,  η)  coordinates.  So,  the  same  equation  gets  converted  into  (ξ,     ϕ                

η)  coordinates.  So,  when  you  do  the  conversions  do  the  differentiation  and  do  the  various                 

conversions   which   is   sort   of   listed   over   here   and   the   final   expression   that   you   get   is,   

 + =  0  which  is  a  Laplace  equation.  So,  this  equation  is  a  potential  equation  its    ϕξξ    ϕηη                

Laplace   equation.   



  

And  it  is  valid  or  it  governs  the  incompressible  flow  which  is  something  we  already  know                  

about  and  we  know  many  solutions  of  these  incompressible  flows,  Laplace  equations  we  have                

done  that  for  airfoil  sources  things  and  so  on.  So,  now  can  we  then  utilize  the  results  that  we                     

already  have  in  incompressible  flow  for  that  we  should  know  that  what  happens  to  the  shape                  

of   the   airfoil   in   the   transformed   coordinates.     

(Refer   Slide   Time:   20:35)   

  

So,  let  us  look  at  that.  So,  in  xy  space  we  know  the  boundary  condition  corresponding  to  that                    

is   =.  Now  if  you  consider  it  in  (ξ,  η)  coordinate,  the  shape  of  the  airfoil  is   V∂y
∂ϕ =  ∞

df
dx =  ∂η

∂ϕ                  

.  So,   .If  you  do  the  math  by  differentiating  you  will  approach  get  this  (ξ) η = q   V ∞ dξ
dq =  ∂η

∂ϕ              

particular   solution   and   you   compare   it   with   the   previous   solution   they   are   exactly   the   same.   

Or  what  you  get  is  d   or  in  other  words  what  it  shows  is  that  the  shape  of  the  airfoil       df
dx =  dξ

dq                

does  not  change  as  you  move  from  x  y  coordinate  to  zeta  eta  space.  So,  it  remains  the  same.                     

So,  whatever  solutions  we  get  in  (ξ,  η)  coordinates  which  is  for  a  particular  shape  of  the                   

airfoil  in  incompressible  flow  that  can  be  used  as  a  solutions  in  the  compressible  domain  but                  

there  will  be  additional  terms  that  will  come  and  that  term  is  due  to  β.  So,  when  you  put  the                      

term   denoting   β.     

  

So,  you  get  Cp  =   where  is  the  perturbation  velocity  in  (ξ,  η)  coordinate  which  is  an         1
β 

2u
V ∞

   u            

incompressible  flow  solution.  And  that  can  be  represented  as  Cp 0  or  Cp  incompressible  which                



is  already  known.  So  Cp  incompressible  if  it  is  known  then  the  Cp  compressible  is  known,                 

you   can   get   it,    Cp   =     CP0

√1 M− ∞
2

 

 So,  this  result  is  very  important  very  famous  also  and  used  to  extend  aerodynamic  relations                  

that   is   known   in   incompressible   flow   to   compressible   flow.   

  

This  is  the  Prandtl-Glauert  rule  it  is  a  similarity  rule  and  extensively  used  to  relate                 

incompressible  flow  relations  to  subsonic  compressible  flow  for  the  same  shape  and  used               

extensively  in  aerodynamics.  But  there  are  obviously  certain  it  is  a  linearized  problem,  actual                

flow   is   not   linearized.   So,   people   have   looked   at   other   ways   to   overcome   this   also.     

(Refer   Slide   Time:   23:26)   

  

Now  if  you  use  that  is  C L  for  a  small  that  for  a  section  or  its  for  an  airfoil  similarly  you  can                        

look  at  lift  and  moment  coefficients  which  are  the  integration  of  Cp.  And  here  also  since  all                   

other   parameters   are   constants   you   get   you   can   write   C L    = .    CL0

√1 M− ∞
2

  

Similarly  C M  =  .  So,  what  you  see  is  that  in  compare  to  the  incompressible  lift      CM0

√1 M− ∞
2

             

coefficient  as  Mach  number  increases  the  lift  coefficient  also  will  increase  because                1 −M∞
2  

is   there.     

  

So,  it  will  increase.  So,  what  you  also  see  is  that  the  effect  of  compressibility  is  to  increase                    

the  perturbation  velocity  as  increases.  But  this  here  what  is  happening  is  you  are      M∞
2           

considering  .  So,  that  is  a  free  stream  flow  but  we  know  that  as  the  flow  passes  over  an   M∞
2                   

airfoil  it  accelerates.  So,  it  accelerates.  So,  it  accelerates  over  the  foil.  So,  you  are  expecting                  



that  the  Mach  number  will  increase.  This  effect  is  not  considered,  people  try  to  consider  it                  

there  are  some  improved  compressibility  corrections  like  the  Laitone’s  equations  or             

Karman-Tsien   rule.     

  

So,  they  are  also  applied  and  these  show  this  graph  shows  a  comparison  of  various                 

experiments   with   these   different   kind   of   rules   where   it   is   seen   that   Karman-Tsien   rule.    

 rule  is  somewhat  more  it  applies  closely  or  follows  closely  to  the  experimental  values  while                  

Prandtl  Glauert  rule  lie  in  the  bottom  part  of  it  while  Laitones  lie  on  the  upper  part  of  it.  But                      

they  are  all  good  approximations  when  you  want  to  make  some  quick  calculations  of                

aerodynamic   coefficients.   

  

Then  Prandtl  Glauert  rule  can  be  easily  applied  and  it  is  quite  useful.  So,  the  highlight  of  this                    

small  perturbation  analysis  that  we  saw  is  the  end  result  resulting  in  Prandtl  Glauert  rule  and                  

this  particular  approach  where  we  see  that  you  take  small  perturbations  and  linearize  a  non                 

linear  equation  and  then  try  to  get  some  results  out  of  it.  So  this  is  for  subsonic  flow  and                     

similarly   we   look   at   supersonic   flow.   

  

And  in  supersonic  flow  we  find.  Now  it  is  going  to  be  a  hyperbolic  equation  we  saw  that                    

earlier.  So,  that  it  behaves  more  like  a  wave  equation.  So,  there  are  consequences  similar                 

consequences  to  the  linearization  also.  And  we  will  see  what  can  be  what  is  the  result                  

expected   out   of   it   in   the   next   class.   So,   thank   you.   

  

  


