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Small   Perturbation   Theory   -   I     
  

So,  until  now  for  quite  a  long  duration  of  this  course  we  have  been  discussing  about  1D  flows                    

quasi  1D  flows  where  we  make  the  assumption  that  the  flow  variables  remain  uniform  across                 

a  certain  cross  section.  We  do  not  actually  solve  for  entire  flow  field  and  the  dominant                  

approach  used  is  control  volume  methods  where  we  looked  at  what  is  happening  across                

interfaces.   And   do   not   go   into   details   of   what   is   happening   within   the   flow   field.   

  

But  now  in  real  problems  in  actual  applications  we  may  need  to  know  these  flow  field  details                   

and.  So,  the  approach  has  to  change  and.  So,  we  look  into  the  cases  of  solving  the  entire  flow                     

field.  A  particular  approach  of  course  the  complete  set  of  Navier  stokes  equation  for                

compressible  flows  have  to  be  solved  numerically.  There  is  no  analytical  method  to  do  it.  But                  

there   are   many   approximate   methods   which   will   give   us   useful   results.     

  

One  among  them  is  if  the  flow  if  changes  in  the  flow  produced  by  say  very  slender  bodies  or                     

airfoils,  thin  airfoils  they  are  all  small  with  respect  to  the  free  stream  flow.  So,  they  introduce                   

small  changes  to  the  flow.  So,  that  kind  of  an  approach  is  known  as  small  perturbations  to  the                    

main  flow.  So,  a  small  perturbation  theory  but  before  we  go  into  small  perturbations.  We                 

really   have   to   look   at   the   flow   equations   themselves   at   looking   at   the   entire   flow   field.   
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And  therefore  we  have  to  get  ourselves  away  from  control  volume  approach,  integral               

formulations  to  differential  equations  and  look  at  details.  Here  we  will  be  particularly  looking                

into  some  details  of  inviscid  irrotational  flows  and  some  good  solutions,  some  important               

insights  like  Crocco’s  theorem  and  how  do  the  flow  equations  behave  as  the  flow  changes                 

from   subsonic   to   supersonic.   

  

Some  important  results  like  the  Prandtl-Glauret’s  rule  which  allows  extension  of             

incompressible  aerodynamic  relations  to  compressible  subsonic  flows.  And  some  idea  of  say              

pressure  distributions  over  bodies  in  when  they  are  very  slender  or  the  perturbation  is  very                 

small.  And  in  supersonic  flows  they  can  be  linked  only  to  the  surface  inclination.  And  largely                  

this   outline   follows   modern   compressible   flow   by   Anderson.     
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So,  we  will  start  looking  at  the  differential  equations  of  fluid  motion  and  we  are  looking  at                   

inviscid  flows.  Therefore  the  shear  forces  are  not  there  or  they  are  absent  .  So,  continuity                  

equation   here   density   is   a   variable.     

  + 𝛻 .(ρ   )   =0  ∂t
∂ρ  V

→
 

For   a   steady   flow,    .(ρ   )   =0   V
→

 

  Momentum   equation   we   hav,   

  rho   DV   by   Dt,   material   derivative   of   velocity,   is   the   change   in   flux   momentum   flux   change.   

ρ   + 𝛻 P   -   ρ   -     =   0  Dt
DV

→

F body Fd shear  

Rate  of  change  of  momentum  is  equal  to  all  the  forces  that  appear  on  the  on  the  fluid  which  is                      

due  to  pressure,  it  can  be  due  to  body  forces  ,it  can  be  due  to  shear  forces.  In  this  particular                      

case  we  consider  only  pressure  forces  and  the  others  are  negligible.  Therefore  we  come  to  the                  

Euler’s   equation   which   is,     

ρ   + 𝛻 P   =0  Dt
DV

→

 

for   steady   flow,   

ρ     (   )    + 𝛻 P   =0  .∇  V
→

V   
→

 

  

Then  you  consider  the  energy  equation  where  we  are  considering  work  done,  heat  added  and                 

change  in  total  enthalpy  changes  in  total  enthalpy  this  is  the  differential  equation  where                D
Dt

corresponds  to  a  material  derivative.  If  we  consider  adiabatic  flow,  no  work  done,  no  external                 

work  then  the  corresponding  and  steady  flow  then  essentially  the  total  enthalpy  should               

remain   a   constant.     

ρ     (   ) =0  .∇  V
→

(h ) +  2
V 2

 

  

So,  you  have  continuity,  momentum  gives  you  Euler’s  equation  in  the  differential  form  and                

the  condition  of  adiabatic  flow  with  other  effects  being  neglected  no  work  done  gives  you                 

that  the  total  enthalpy  remains  constant.  So,  now  we  look  at  how  these  equations  can  be                  

manipulated.   
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To  look  at  that  we  said  we  are  looking  at  inviscid  a  rotational  framework  what  do  you  mean                    

by  irrotational  framework?  We  are  looking  at  vorticity  which  corresponds  to  rotation  in  the                

fluid  element.  When  there  is  no  rotation  then  we  say  that  the  flow  is  irrotational  or  vorticity  is                    

0.   Vorticity   is   related   to   the   velocity   field   by   curl.   So,   this   is   the   relation   for   vorticity.   

ζ    =    𝛻    x     V
→

 

Essentially  for  irrotational  flows  curl  is  0  ,curl  of  velocity  is  0,   𝛻  x   =0  where  velocity  is  a                 V
→

      

vector.  And  if  we  consider  a  three  dimensional  field  it  is  u  i  +  v  j  +  w  k.  So,  this  is  the              V
→

=             

general  form.  Now  let  us  take  a  look  at  the  inviscid  flow  which  is  represented  by  the  Euler                    

equation   ,   (   )    +     =0  .∇  V
→

V   
→

ρ
∇P  

  Now   )   ,this   term   can   be   represented   as,   .∇  (V
→

V   
→

  

 )   =     –   V   x    𝛻    x    .∇  (V
→ V   

→
( )∇ 2
V 2

 V
→

 

So,   curl   is   over   here   this   is   an   identity,   it   is   a   vector   identity   and   V   x    𝛻    x     V
→

 

So,   we   can   substitute   this   into   Euler   equation   and   we   get   here,   

  +     =   V   x    𝛻    x    ( )∇ 2
V 2

ρ
∇P  V

→
 

  +     =   (V   x    𝛻    x   ).   ∇( 2
V 2 ) .  dr

→
.dr  ρ

∇P →
 V

→
dr   
→

 

Now  if  you  try  to  integrate  it  along  a  certain  path  dr  if  you  try  to  integrate  this  particular                     

equation   along   a   certain   path   and   then   this   will   become   a   total   derivative,     

  +     =   (V   x    𝛻    x   ).   ∇( 2
V 2 ) .  dr

→
.dr  ρ

∇P →
 V

→
dr   
→

 

=   dr .dr  ∫
 

 
d( 2

V 2 ) .
→

+  ∫
 

 
ρ
dP →

(V  x ∇ x V ).dr  ∫
 

 

→ →
 

  



It  is  a  directional  derivative  now  and  this  integral  for  the  component   in  the              V  x ∇ x V )  (
→

   

direction  dr.  So,  if  we  consider  an  irrotational  flow  then  d  0  everywhere  then  this             x V  ∇
→

=      

term   the   right   hand   term   completely   drops   out   therefore   we   get,   

=0   dr .dr  ∫
 

 
d( 2

V 2 ) .
→

+  ∫
 

 
ρ
dP →

 

 If  you  consider  the  case  of  an  incompressible  fluid  this  must  be  quite  familiar  to  all  of  you  it                      

is   nothing   but,   

  -     +   =0  2
V 2

2

2
V 1

2

ρ
P P2− 1  

Or   

  =   constant  2
V 2

+ ρ
P  

 which  is  nothing  but  the  Bernoulli’s  equation,  that  is  for  a  incompressible  constant  density                 

flow.     

  

So,  this  is  it  turns  out  to  be  the  Bernoulli’s  equation.  But  here  is  general  Euler  equation  we                    

cannot   do   this   integration   .   So,   can   be   integrated.   So,   .dr  ∫
 

 
ρ
dP →

 2
V 2

  

 .dr  onstant2
V 2

+ ∫
 

 
ρ
dP →

= c  

In  an  irrotational  flow  it  is  constant  everywhere  but  if  there  is  rotational  if  it  is  rotational  and                    

vorticity  exists  then  it  is  constant  along  directions  where   0  which  is  true           dr  V  x ∇ x V( →) .
→

=      

for   a   stream   line.     

  

So,  it  is  for  rotational  flows,  this  parameter  or  this  particular  combination  is  constant  along  a                  

stream  line.  So,  that  distinction  must  have  been  familiar  to  you  in  the  context  of  Bernoulli’s                  

equation  but  it  is  true  in  the  case  of  Euler’s  equation  only  thing  now  it  is  a  compressible  flow,                     

density  is  a  variable.  So,  it  cannot  be  you  cannot  easily  integrate  this  as  you  did  for  the                    

Bernoulli’s   equation.     

  

So,  the  consequence  of  having  vorticity  and  irrotational  flow  should  be  understood  in  this                

context.     
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So,  another  important  sort  of  theorem  which  comes  about  from  this  inviscid  considerations               

and  what  we  had  discussed  previously,  the  Euler’s  equation  written  in  terms  of  vorticity.  Here                 

we   have   the   term    ρ
∇P  

  Now   we   consider   the   equation   for   enthalpy   the   Gibbs   equation,   

T   =    S  ∇ h  ∇ −  ρ
∇P  

So,  this can  be  written  in  terms  of  T  ,   that  entropy  gradient  and  gradient  of     ρ
∇P       S  ∇   h  ∇        

enthalpy.     

  

So,  if  you  replace  that.  So,  then  you  can  get  a  relation  between  vorticity,  enthalpy  and  entropy                   

gradients   along   with   of   course   kinetic   energy   gradient.     

+   =   (V   x    𝛻    x     ∇( 2
V 2 ) h ∇S  ∇ − T )  V

→
 

  

But   these   two   together   taken,   =   h 0 .   h )( +  2
V 2

  

So,   it   you   get.   

(V   x    𝛻    x     =  )  V
→

h ∇S  ∇ 0 − T  

If   you   had   considered   an   adiabatic   flow   which   is   what   we   have   been   considering   here   

  constant.   h0 =    

So,   gradient   of      is   not   there,   .    h0 h  ∇ 0 = 0   

So,  therefore  we  get  the  information  that  if  there  are  any  gradients  of  entropy,  if  it  is  an                    

isentropic  flow  and  entropy  is  constant  everywhere  then  the  consequence  is  that  there  is  no                 

vorticity.  So,  if  you  consider  that  is,  adiabatic,  isentropic  flows.  So,  isentropic  flows               



essentially  are  irrotational  flows.  But  if  you  consider  there  are  there  is  rotational  effects  in  the                  

flow   or   rotationality   is   there   in   the   flow.   

Then  directly  from  this  equation  it  is  seen  that  there  should  be  entropy  gradients.  Where  is                  

this  sort  of  applied  ?  If  you  consider  any  generic,  say,  body  in  a  supersonic  flow.  So,  this  is  a                      

certain  body  placed  in  supersonic  flow  then  we  know  there  should  be  a  shock  and  if  the  body                    

is  blunt  you  will  have  a  bow  kind  of  a  shock  where  the  shock  has  a  curvature.  So,  you  see                      

that  the  shock  has  curvature  along  this  direction.  That  means  at  every  point  along  the  shock                  

the   shock   strength   varies.     

  

So,  now  we  know  that  across  a  shock  there  is  an  entropy  jump.  So,  there  is  an  entropy  jump.                     

So,  if  you  take  any  particular  stream  line  as  it  goes  across  the  shock  ,there  is  an  entropy  jump                     

it  has  different  entropy.  If  you  take  different  stream  lines  they  have  different  entropies.  So,                 

downstream  of  the  shock  in  this  region  which  is  marked  by  the  brown  circle  in  front  of  this                    

bow  kind  of  in  front  of  this  blunt  kind  of  a  shape  having  a  bow  shock  you  have  entropy                     

gradients   that   means   the   flow   is   no   longer   irrotational   it   has   rotational,   it   is   rotational.     

  

So,  flow  is  rotational  there  are  entropy  gradients  in  this  kind  of  a  case.  But  if  you  consider  a                     

case  like  a  planar  shock  that  is  suppose  you  consider  a  wedge  kind  of  a  shock  then  here  you                     

see  that  you  have  an  oblique  shock  and  oblique  shock  turns  all  the  stream  lines  by  the  same                    

angle.  So,  lines  were  parallel  earlier  they  are  parallel  after  the  shock  they  have  just  been                  

deflected  by  a  certain  angle  there  is  a  entropy  jump  across  the  shock  but  after  the  shock  there                    

is   no   entropy   gradient.     

  

So,  before  the  shock  there  it  is  a  constant  entropy,  after  the  shock  it  is  another  constant                   

entropy.  Only  that  entropy  is  changing.  That  means  these  are  cases  where  flow  is  irrotational.                 

So,  this  is  very  important  as  to  how  we  can  apply  different  approaches  in  solving  such  flow                   

field   problems   and   Croco’s   theorem   connects   vorticity   with   entropy   gradients.     
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So,  generally  the  condition  of  irrotationality,  irotational  flow  is  that  𝛻  x   =  0.  So,  you  get                V
→

      

relationships   between   the   different   components   of   the   velocity   that   is,   

 ,   etc.  which  might  be  familiar  for  a  2  dimensional  flow.  We  always  have  this  ∂y
∂u   ∂x

∂v                

particular  form   =   .  But  in  a  general  three  dimensional  flow  it  can  be  evaluated  for  all    ∂y
∂u   ∂x

∂v                

other   components   also.    So,   we   are   looking   at   irrotational   flows.     

(Refer   Slide   Time:   16:03)   

  

So,  if  you  consider  irrotational  flows,  then  a  vector,  if  you  have  a  vector  and  it  is  solenoidal                    

or  does  not  have  a  curl  then  that  particular  vector  a  can  be  represented  as  the  gradient  of  a                     

scalar.  So,  this  is  also  an  identity.  This  is  a  vector  identity.  Curl  of  gradient  is  equal  to  0                     

means  there  you  can  always  define  a  scalar  function  or  scalar  potential.  So,  if  you  consider                  



rotational  flows  then  we  can  define  a  velocity  potential   𝛷  such  that  velocity  is  a  gradient  of                   

𝛷 .    

𝛻    x    𝛻      =0   V
→

 

So,  u  =   ,  v=   ,  w  =   .  You  would  have  become  familiar  with  this  kind  of     ∂x
∂Φ    ∂y

∂Φ     ∂z
∂Φ            

approach  in  your  fluid  mechanics  classes  on  potential  flow  theory  and  so  on.  This  is  the  same                   

approach.   
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But  now  it  is  being  applied  to  a  compressible  flow  and  in  a  compressible  flow  density  is                   

changing.   So,   if   you   look   at   the   continuity   equation   which   is   essentially,   

  

𝛻 .(ρ )   =   0   →     +      +     =0   V
→

∂x
∂ρu

∂y
∂ρv

∂z
∂ρw  

And  consider  the  velocity  potential   𝛷  and  u  is  then  u  =   .  we  can  substitute  those  terms              ∂x
∂Φ        

here   in   the   equation   and   we   get   

  

  +      +     =0     →    ρ(   +     +   )   +     +      +     =0   ∂x
∂ρΦx

∂y
∂ρΦy

∂z
∂ρΦz Φxx Φyy Φzz Φx ∂x

∂ρ Φy ∂y
∂ρ Φz ∂z

∂ρ   

  

Now   we   can   use   the   Euler’s   equation   to   try   and   remove   ρ   from   this   particular   expression   .     

dP   =   d( )   =    d( )  2
ρ V 2

2
ρ  + v wu2  2 +  2  

  

And   that   can   be   written   in   terms   of   the   derivatives   of   potential   u    =      ,   v=      ,     w   =    ∂x
∂Φ

∂y
∂Φ

∂z
∂Φ  

  



And  we  use  the  definition  of  speed  of  sound  because  it  is  an  isentropic  flow,  steady  isentropic                   

flow.   So,   you   can   use,     

  =      at   constant   entropy.  a2  ( ∂ρ
∂P )s  
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Combine   them   together   and   we   get,   

dρ   =   d( )  a2
ρ−

2
Φ  + Φ +Φx

2
y

2
z

2

 

 So,  now  considering  changes  in  every  direction  which  is  x  direction  ,y  direction,  z  direction                  

separately  ,we  have  to  differentiate  this  separately  and  put  them  into  the  continuity  equation                

and   arrive   at   the   final   equation   for   the   velocity   potential   in   case   of   compressible   flows.   

  =     ( )  ∂x
∂ρ

a2
ρ− ∂

∂x 2
Φ  + Φ +Φx

2
y

2
z

2

 

  

Here   you   can   see   this   is   the   final   equation   which   is,   

  

   +   +     =0   1( −  a2
Φx

2 )Φxx   1( −  a2
Φy

2 )Φyy  1( −  a2
Φz

2 )Φzz − Φ Φ Φa2
2Φ Φx y

xy − a2
2Φ Φx z

xz − a2
2Φ Φy z

yz  

  

 So,  now  this  equation  written  only  in  terms  of  the  velocity  potential,  is  the  velocity  potential                   

equation  is  a  general  equation.  Of  course  it  has  the  term  .  We  have  to  look  at  a  way  to             a2          

calculate   .  a2  

  

But   otherwise   it   is   only   in   terms   of   the   velocity   potential.   So,   now   how   to   get     into   this?  a2  
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We  can  use  the  fact  that  it  is  an  adiabatic  flow  h 0  =  constant.  So,  if  you  take  a  calorically                      

perfect   gas   then   you   can   express   the   equation,   

Cp   T   +     =   Cp   T 0  2
V 2

 

So,   this   can   be   expressed   in   terms   of   a 0     and   this   we   had   done   very   early   in   the   class   ,   

  +     =  a2

γ 1− 2
V 2 a2

0
γ 1−  

where   now        =   .   V 2 =   + v wu2  2 +  2  ΦΦx
2 +  y

2 + Φz
2   

  

So,  since  you  can  know  a 0 ,  it  is  a  constant  within  the  flow.  So,  now  you  have  an  equation  to                      

relate   with  .  So,  one  should  notice  that  this  equation  now  is  a  non  linear  equation  and  it   a2   a2
0                 

is  general  equation.  It  applies  to  any  rotational  isentropic  flow.  It  can  be  subsonic  transonic                 

supersonic  or  hypersonic  and  if  you  consider  that  a  goes  to  infinity.  So,  if  you  consider  that                   

which   is   corresponding   to   an   incompressible   flow.   

  

The  speed  of  sound  goes  to  infinity  in  an  incompressible  flow  then  all  these  terms  drop  off                   

slowly   these   the   different   terms   which   contain       drop   off   and   then   you   get   only  1
a2  

   +   +  Φxx Φ yy Φzz = 0  

which  is  the  familiar  Laplace  equation,  potential  flow  equation  for  a  irrotational  flow,  so,                

incompressible  flow.  So,  it  is  a  general  equation  and  it  contains  the  incompressible  part  also.                 

So,   this   is   the   velocity   potential   equation.   
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And  if  we;  consider  just  the  2D  velocity  potential  equation.  Let  us  try  to  see  how  this  velocity                    

potential  equation  behaves  .  So,  and  look  at  how  the  partial  differential  equation  is  seen.  So,                  

writing,   

=     ,      =   ,       =      and        =   uv   .   So,   you   get,   u2  Φx
2  v2 Φ y

2 w2 Φz
2 ΦΦx y  

  

   +     =0   1( −  a2
u2 ) Φxx   1( −  a2

v2 )Φyy − Φa2
2uv

xy  

  

 To  understand  the  behaviour  of  these  equations  second  order  partial  differential  equation  we                

look  at  the  determinant  which  is  D  =   -  4  AC  and  you  can  express  this  and  it  comes  out  as          B2               

.  Now  we  know  that  if  the  determinant  is  negative  then  the  partial  differential   M 2 − 1               

equation  behaves  in  an  elliptic  manner.  So,  elliptic  example  of  ellictic  partial  differential               

equation  is  the  Laplace  equation  and  a  canonical  form  which  you  would  have  come  across  in                  

your   studies   is   the   Laplace   equation.   

  

And  characteristic  of  such  kind  of  equations  is  that  any  change  in  any  part  will  influence  the                   

entire  domain  that  we  are  considering  which  is  true  when  we  consider  steady  subsonic  flows.                 

Information  sort  of  propagates  everywhere  in  subsonic  flows.  Changes  in  pressure  can  be  felt,                

the  effects  of  that  can  be  felt  everywhere.  While  if  we  take  M  =  1  then  it  is  exactly  0  it                      

behaves  in  a  parabolic  manner  which  is  similar  to  the  heat  equation  which  you  would  have                  

come   across   in   your   studies.   

  



While  if  D  is,  if  you  take  M  >  0,  M  greater  than  1  then  determinant  is  greater  than  0  or  there                        

are  real  roots  to  this  determinant.  So,  that  means  this  behaves  more  like  it  is  a  hyperbolic                   

behaviour.  So,  supersonic  flows  steady  supersonic  flows  behave  in  hyperbolic  manner  which              

is  very  important  and  a  very  well  known  equation  which  behaves  similarly  is  the  wave                 

equation.     

  

So,  we  find  that  in  supersonic  flows  the  behaviour  is  very  much  like  that  of  a  wave  equation                    

in  that  sense  information  propagation  in  supersonic  flows  happen  only  along  specific              

direction  is  like  a  wave  propagating.  So,  all  regions  of  the  supersonic  flow  are  not  affected  by                   

small  changes  happening  or  changes  in  pressure  happening  at  particular  points.  Only  when               

the  wave  or  say  a  mach  line  passes  along  a  particular  point  they  connect  the  2  points  then                    

they   affect   those   points.     

  

So,  there  is  directionality  in  supersonic  flows  we  will  see  this  again  and  again  in  subsequent                  

classes.  Somewhat  mixed  behaviour  is  seen  in  transonic  flows  where  both  subsonic  and               

supersonic  parts  can  be  present.  But  essentially  what  you  have  to  understand  is  that  the                 

velocity  potential  equation  in  its  full  form  which  is  what  is  given  over  here  is  a  nonlinear                   

equation.   
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 It  has  to  be  there  is  no  analytical  approaches  to  solve  it  and  you  can  only  do  it  in  a  numerical                        

manner.  So,  an  approach  that  is  taken  when  we  can  consider  that  the  flow  that  we  are  trying                    

or  we  are  interested  to  solve  introduces  only  small  changes  to  a  mean  flow  can  be  taken  and                    



that  approach  is  known  as  the  small  perturbation  theory.  And  we  will  look  at  how  these                  

equations   change   if   we   consider   such   a   small   perturbation.   

  

And  then  first  we  look  at  subsonic  flows,  subsequently  after  that  we  look  at  how  things                  

happen  in  supersonic  flows.  This  is  a  very  important  information  that  subsonic  flows  behave                

in  an  elliptic  manner  similar  to  Laplace  equation  and  supersonic  flows  behave  in  a  hyperbolic                 

manner  similar  to  wave  equation.  That  you  have  to  really  understand.  And  it  has                

consequences   in   how   these   equations   are   solved.     

  

So,  next  class  we  will  move  towards  application  of  small  perturbation  theory  in  subsonic                

flows.   So,   thank   you.   

  

  


