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Lecture 48
Generalized 1D Flows
So let us look at a generalized flow in quasi 1D which consists of a combination of various
parameters like variations in area, there may be friction there can be heat transfer. There is
also an additional factor which we had not accounted till now is if there is a injection of mass,
if mass is getting added also. This which is typical in cases of say propulsion systems where

there is some fuel getting injected into the flow then there is a mass addition also happening.

So, we will look at these cases until now the analysis we were doing used quasi 1D
assumption which is that flow properties remain uniform across cross sections. And we
looked at different drivers like either only area was changing or there was only friction and
no other effects were there it was a constant area duct. Similarly, only heat addition or heat
removal. But in real life problems and applications there is always combination of these
effects. So, how do we analyze such flows.?
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1D flow with Mass addition
Figure illustrates the physical model for simple mass addition. Mass is
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Momentum Equation: ahy

PA= (P +dP)A = (i +dm)(V +dV) = mV —udn m o
Neglecting the higher-order term dmdV, and using 8 = u/V gives  # « : ‘

(i + (¥ +dV)
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4P+ gV +pV2(1 - 0)—=0

Before we go there we will just look at quickly look at what happens when there is mass
addition without going much into details. Because now this process of doing a quasi 1D
analysis with a control volume must have become quite familiar and this can be now you can

do this continuously. So, now if you look at this what is this simple control volume that is



taken. You have a constant area duct and at some place the mass is getting added certain d m

is getting added.

So, across this control volume there is an increase in mass. So, m is not a constant anymore.
There is a variation of m and you can get the differential equation from this quantity.
m= pAV is the mass flow rate through a particular cross section that is .
m . . . . .
So, @ can happen due to changes in density, change in area and change in velocity.

dm — dp dd v
m p+A+V

So, there can be domain if you consider a constant area duct then df =0. So,
m p V
So, A changes in mass flow rate will get affected in terms of change in velocity and density.

And if you consider the energy equation here we are considering that this particular mass that

is getting added is having the same stagnation enthalpy as the main flow.

So, both of them have same stagnation enthalpy therefore there is no change in stagnation

enthalpy when additional mass is getting added, that is the assumption being done here. In
2

general this can be different we will soon see that one also. So, 4 + V? = constant

So, you can write now in terms of derivatives. Now if you look at the momentum equation
you should be careful here because in general this mass that is getting added can have a

velocity which can be in any general direction need not be along the same axis.

So, it need not be along the same axis. So, we are looking at only 1D flow. So, we are looking
only along x axis therefore we should take the component of velocity in the x axis which is u
here to look at momentum equation, X momentum equation, solve that.

PA —(P +dP)A = (m +dnm ) (V+dV) - mV -u dm

Now this # the component of the force in the direction in x direction for the injected flow ,

4 that is given the term 0 = % | it is a parameter in this problem. So, now you can divide

the entire equation by m and this equation can be got from here.
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1D flow with Mass addition

2
Dividing previous equation by P, intrcducing% = %, simplifying, yields

dp dv dm
—+yME—+yMA(1-0)—=0
2 4 m

" a _dp d
Equation of state: P = yRT = TP = FP 7?7'

v v dM  dv  1dT
Mach number: M =- = ——= =2 —=——-—
a JYRT "M vV 2T

i
Y1 _ dPy _dP yM? M
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From the isentropic relations, S [1+( - )M ] = T + “vT_le =

2
Impulse equation: F = PA(IYMZ} HIF_gP_M M _ 0

Entropy equation: taking dT; = 0,2 asINF=Lib
Cp Y PO

dP+pVdV +p V> (1-0) & = 0

Now as we did in all other cases our intention is to represent the main governing equation
here. It is a momentum equation you express momentum equations only in terms of Mach
number. This can be done by series of algebraic manipulations of the different equations
which is how pressure is related to the equation of state, P =p RT and

P p+T

Then you have Mach number, M = % How is that related. Then you have %’ this relation.
From here you can get the relationship between %’ . And similarly the impulse function and

also you consider the dT,
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1D flow with Mass addition

Employing the critical state, denoted by the superscript
*, as the reference state. Thus,
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So, you can plug all of them and then look at integrating this with % as the driving
m

parameter and similar to all other cases you can also have the star point which is the reference

point and you can get closed form solutions for mass addition also.
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Influence Coefficients for Simple Mass Addition
for a Perfect Gas
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Influence Coefficient

* Influence Coefficients for simple mass addition in constant area duct

am i =
u

dP = a
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dp,
D
dF
T
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&

So, let us directly go and look at how mass flow mass addition affects various parameters
when the flow is subsonic. Similar to all other cases when flow is subsonic Mach number
increases ,velocity increases, pressure, temperature, density decreases and entropy always
increases. So, mass addition entropy increases. There is but in supersonic flow it goes the
other way around which is Mach number decreases, pressure, temperature, density they

increase and velocity decreases again entropy will increase.

So, that is a quick introduction that we did not consider mass addition but mass addition is
also can be a possibility in specific applications. So, just before we go to the generalized case
where we consider all possible variations of the driving forces or driving drivers of these
equations this was a quick introduction to mass addition. The general analysis tools are

similar to what we had done for the previous cases.
(Refer Slide Time: 08:30)



Generalized steady 1D flow

+ Figure illustrates schematically the physical model for a
generalized steady one-dimensional flow. The independent
driving potentials considered are:

PtV Poi

P+dP Atad
ptdp  VHdV
T+dTl M+dM

—-

. Area change dA.
2. Wallfriction 6Fy.
3. Heat transfer §Q.

. Work 6W.

. Mass addition dm.

]
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I
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— m+di
1
1
1
1 Fo+dPy
I h+ds o t+dpy

. Body forces caused by gravity pg 4 dz. F+dF

~N o v o~

. Other body forces, drag of entrained particles, etc., denoted
by 8D.

8. Chemical reactions through their. effect on the fluid
equations of state.

x+dx

So, now let us look at the generalized steady 1D flow where you can have all kinds of effects
that is happening. One is that it is a varying area duct. So, area change is happening then we
are considering that there is wall friction so there is a frictional force along the walls. So,
friction is considered there is heat that is getting added or removed. So, heat transfer is there.
External work can be done or done by the system or on the system.

There can be mass addition with different sort of temperature, stagnation temperatures and
pressures for the mass being added. You can have body forces and also in some cases you can
have some entrained particles which induce some drag. So, another drag force is also present
and there can be effects like there can be chemical reactions which can change properties of

the fluid that can also be considered.

For the case that we are discussing here we will still consider calorically perfect gas. If
chemical reactions are happening that assumption is not completely right but for the sake of a
analysis in this class we will just consider the calorically perfect gas.
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Governing Equations

+ Continuty Equation i = pdV = = 0 L 4 &
Continuity Equation i = pAV = " hith

2 i

* Momentum Equation dP + pVdV + pgdz + %(4’%) + %D +pl?(1- y)%m =0

* Energy Equation
, : & V2 v?
8W - 860 + (m + dm) lh+dh +7+d(7>+g(z+dz)] fm<h+7+gz)
V2
= dm(hi +24+gzi) =0
+ Combining terms, neglecting products of differentials and dividing by 1, we obtain
v 5
6W—6Q+dh+d(7)+gdz+ —=0

iy L |
g iz 1T TR )

dm

2
* WhereHy=h+ VT + gdz. Define the paramster, dHy; = (Hy — H;)
8W - 8Q + dH, + dHy;

m

So, what do we do now, we write the conservation equations. Now considering all effects, so,
now you have,

m=pAV and therefore area is also changing.
do = do dd 4
m p + A + 14

Now momentum equation you can consider, you have all the various parameters,

2 .
dP +pVdV + pgdz+ = LE 1 & 1 pp(1-y) d =0

How we reach that each individual part of these terms, we have already discussed in those
corresponding sections how we got this was dealt with in Fanno flow. Similarly this is 0D by
a reference. So, force by area. So, that it is consistent in dimensions where D is a drag force.
And this particular quantity pV3(1 - y)where y is the same as 6 = ;.

We have just now discussed in this particular section. So, this is due to mass addition.
Similarly if you like to take a look at the energy equation,

y? 14

W o— 8Q + (n'a+dn&)[h+dh+ 7+d(%2)+ g(z+dz)] - m[h+ 72+ +gz] -

dri [y + - gz,] =0

Again you come to work done, heat added or removed and then here is the change in total

enthalpy is a difference between what is outgoing and what is incoming. So, outgoing is

given here [ +dh+ gt d(§)+ g+d2)].



While incoming is one is due to the core mass flow ,the other one is due to an injection dm
and here it can have different in a total enthalpy which is for the injectant. So, that is possible.
Now in this energy equation you can combine different differentials together and here is the
change in h,. It is dh,, this entire term dh, while this is due to heat , due to the mass addition

term which is also a change in h,, for the mass addition dhy; .

So, finally this is the term here which comes out which is nothing but the statement that work
done and heat added or removed it will be changing the total enthalpy of the system.
(Refer Slide Time: 13:01)

Generalized Steady One-Dimensional Flow
of a Perfect Gas

+ These equations are simplified for the perfect gas, for which P = pR T, h = cr,T,a2 =YART,
and if the effects of the gravity are negligible. The energy equation are rewritten as

80 - 8W — dHy; = dHy = ¢,T,

* Dividing both sides of this equation by ¢, T, and introducing the definition of the stagnation
temperature T, we obtain

8Q — 8W — dHy; -1 _\dT,

80— W —di _ (1 N YT Mz)_“

¢l Ty

+ The appropriate form of the momentum equation is obtained,

dP+ MZdM+yM2dT+yM2 4fdx N 28D ML —y) =0
P M T2 T T [\ ) T YT

So, here the parameters are the driving parameter here is a combination in the energy
equation is a combination of heat that is added ,work that is taken out shaft work and also the
work the total difference between total enthalpies of the injectant fluid and that of the main
fluid and if you divide that entire equation by CpT. So, this is a driving force or driver of the
equations and that is related to change in stagnation temperature. Similarly we can write

down for momentum equation.

You can write down in terms of dpﬂ , ?n” , ‘LTZ and so on.
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of a Perfect Gas

dP_p+dT ﬂ:d_P+ Lk m—
P o' T b P 1+%M2M
dM dv  1dT
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Generalized Steady One-Dimensional Flow

So, and the definitions of this comes from P = p RT. So,
e — dr
P dpp 7

And,

V=Ma,a=\/yRT..M= L So, we get,

a

Then you can use ,T,= T(1+ 5! M?)
and from there you get this equation.

2
dfy _ gr Q=DM gy
T, T l+§M2M

Similarly P,similarly the definition of impulse function F,
F=(1+ yM?)PA

And the definition of entropy.
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Influence Coefficient
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So, you get all these different equations. So, all of them can be taken together. So, what are
the unknown pressures, density, temperature, velocity, Mach number, stagnation pressure,
impulse function and entropy. And what are the various driving changes that drive these
different parameters they are mass addition, change in area, this K + L is due to drag forces.
So, that is momentum equation ,in the momentum equation you have friction drag and

momentum deficit due to mass addition.

. dr o . . .
So, that is over here and —* which is change in stagnation temperature and of course ‘Z—A 1s
0

just the change in area. So, each of those equations can be written in a matrix form. For

example & = ‘ff + &

this can be expressed in completely matrix form over here. So, that can be done if you do the

proper multiplications here then you will find that equation.

Similarly if you take the first equation which is the mass flow equation which was,

Vv p m A

This is from the mass conservation equation that we have done over here from this equation.
And that equation can be found by doing the multiplication of the first row with this column
corresponds to the first value over here. So, this complete equation basic matrix equation

basically represents the set of all equations that we have considered.



Now this can be inverted. So, the way to solve this is you have to express each parameter %

, dp", ‘LTZ in terms of these driving potentials and a influence coefficient associated with them.

(Refer Slide Time: 17:31)

Influence Coefficient

* Influence Coefficients for the Generalized Steady One-Dimensional Flow of a Perfect Gas
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This can be solved analytically, you can use nowadays there are good analytical solvers like

Maple, Mathematica even in Matlab it is possible. You can represent dn‘f using Cramer’s rule

you can represent all these different flow property to a driving potential which is changes in
area due to friction, due to heat processes which is change in stagnation temperature and mass

addition.

So, if you consider say % how does Mach number change? It has an influence coefficient

associated with it for a driving potential df along with that an influence coefficient due to

dr,

frictional forces , an influence coefficient due to —*. So, for every flow parameter we can
0

flow property we can write this influence coefficient for that corresponding driving potential.
So, it is possible to do it.
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Influence Coefficient

+ solving this set of equation using Cramer rule, we get
vt +yM?

+1 1
dM 1+ ME ) da M [(afdx 26D 75—y ail (1)
i N o o e i Wi [ 2) —yyM?— +
W "1 [( D )+yM2PA]+ g T -

* Ina similar manner, remaining seven properties may be determined. One integration of these integral
equation provides us

Q- W - My

Top =Ty +67 Vz M, (Tz) i
)y z_2
. V1 M \T;
APM l+—Mz) P T,
= [RT( 2 } P_T21
i " p ATy
T "2 i,
P, miydy MZT(” ) Ml) Y1\
—_—=——— P[yz P2 1+TMZ
Py m1A1M1T( Y;le) S B =
202 Py P 1+YTM12
y=1.
&=T2(1+ > Ml) BBy +yhg
Ty T (1 +%MZZ) o PAl +yM12

And therefore we can write for example if you consider dﬁ‘ . So, for this you can write down

the entire solution,

g 5 e () ] S S ) - o)

So, this considers all the different properties and how is T , related to T ), it is related by the
energy equation where you can consider heat, work done ,heat added work done by the
system and this is the difference between injectant mass, total enthalpy and the enthalpy of

the main flow. So, if you consider mass flow rate mass flow rate is nothing but m = pAV.

If you consider 2, particular points or at a particular point you can relate it to pressure, Mach

. . . P . . .
number. This was done in previous classes from here we can get to +* . And in since there is
1

an injection of mass also available m, and m, need not be the same that should be understood
over here. So, if you can solve for say Mach number and to do that you have to integrate this,
this can be integrated using any numerical tool there is no analytical way this can be done.
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Solving Procedure

Step 1:The initial and boundary conditions are established, and models are
developed

for the driving potentials.

Step 2: Equation 1 (integral equation for Mach number) is integrated for the first step
along the flow passage by

any standard numerical integration algorithm, for example, the Runge-Kutta method.
Step 3: Other equations are applied for determining the remaining flow properties.

Step 4: Steps 2 and 3 are repeated for subsequent steps along the flow passage until
the

flow properties have been determined in the region of interest.

an-April 2021 Gascynamics:1D Flows and Small Perturbation Theary

But some qualitative aspects of how we can know what is happening can be understood by

just clubbing all of them together into a particular function A. Before we go there the way to

solve these problems

Mach number dff can be written as a function of all the driving potentials and Mach number

and we take points

integrated to 2.

It can be integrated to 2 you can use any numerical integration algorithm. Once you know

is write down any parameter for example here we have written it in

1 and 2 we should know the initial condition at one and it can be

properties at 1 and 2, M, and M, then all other parameters can be done.

(Refer Slide Time: 21:44)

Generalized Steady 1D Flow of a Perfect Gas

Rewrite equation 1 (integral equation for Mach number) in the following form:

am A
ﬁ'1—M'21 "
+y
y+1 ) dA yMP[(afdx\ 200 ] —5—dTo dih
- | oo Lo M2) — yy MY —( .
A=14— M[ IR | A A I+ -y — @

From equation 2, it is seen that the effect of the driving potentials on the direction of the change of the flow
Mach number M depends not only on whether the initial flow is subsonic (M < 1) or supersonic (M > 1), but
also on the sign of A.

When Ais zero, it follows from equation 2, that M remains constant.

Ina simple flow, all of the flow properties would remain constant but, in a generalized flow, there is no such
restriction. For example, in a flow with friction, the passage walls may be designed to diverge at such a rate that
the effects of area change and friction exactly cancel. Equation 3 gives,

dA _ yM? (4fdx
e T(T)
Similarly, the Mach number in a combustor may be kept constant by diverging walls at a rate that cancels the
effects because of heat addition. In that case,

dA  1+yM*dT,

A T




So we can club all these together, the entire thing can be clubbed together as A. So, this
complete expression is A. A now has influence of all various parameters. So, now if you see

that your dﬂﬂf = —2—  So, we can look at what will happen if A has different signs similar
1-M

to what we were looking for say area change or friction or heat addition separately then what
will happen to this particular value.

(Refer Slide Time: 22:31)

Generalized Steady 1D Flow of a Perfect Gas
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Relationship between M and x for different values of A

(a) Anegative. (b) A positive (¢) A changes from negative to positive , (d) A changes from positive
to negative .

So, if you take A, it can have initially it can have a negative sign or it can have positive sign
or it can be zero. So, you have this equation dff = 1—_3]‘72 . So, depending on the sign of
lambda you have various descriptions of the flow. So, initially suppose we take that A is
negative and you consider that A is less than 0 and here you have in x direction. So, this is
the flow that is varying along x quasi 1D flow and on y axis it is Mach number. So, if you

begin with say a subsonic Mach number that is Mach numbers less than 1 and that A is

negative.

So, A is negative if A is negative. So, I_—LA? < 1. So, this quantity is going to be positive. So,
% will be negative that means Mach number will continue to reduce. So, this is the
direction of how the flow would vary with A being 0 there is no change in Mach number that
is a critical point over here. But if A is initially negative, a subsonic flow continues to reduce,

supersonic flow will continue to increase.

Because this becomes negative and the A is negative, negative by negative is positive.

Initially if A is positive then the directions reverse and initially subsonic flow will



accelerate, you will have increase in Mach number 2.1. Similarly you have a supersonic flow
its Mach number will reduce but what if A switches sign in between. So, that can happen A
can be initially negative it can switch sign at some point become equal to 0 and then the sign

can change and become it can become positive.

So, if you consider such an effect then initially if A is negative a subsonic flow will
decelerate then A will become 0 and after that it will accelerate again. Similarly a supersonic
flow first will accelerate it will increase Mach number A will become zero and then it will
decelerate. So, if it was if it had started from one it accelerates decelerates and comes back to

al.

But if you consider a case where you have initially A is positive then a subsonic flow will
accelerate then it will reach A equal to 0 which is a critical point when Mach number is one
and then further it can increase when A switches sign and A becomes less than 0. All the
cases of variable area ducts must remind you of this kind of an approach. From a initial
subsonic case it goes to supersonic flow or from an initial supersonic flow it goes to a

subsonic flow.

If you are not achieving the critical point which is A equal to 0 at Mach number equal to 1
then you will just increase in a subsonic flow, first it will increase then achieve the maximum
point then again it will decrease. Similarly for supersonic flow first it will decrease achieve a
minimum point and then increase the Mach number. So, you can see that these different
curves for different cases of lambda have the elements of various aspects that we have
already discussed separately in different cases whether it be variable area ducts or it be Fanno

flow or Rayleigh flow.

When you have combinations of them you have to look at A where you have a complete

combination.
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Generalized Steady 1D Flow of a Perfect Gas

When only friction is present in a converging-diverging passage, 8D = dT, = dm = 0, and equation 3
reduces to .
_ y+1 O\ dA yM* (4fdx
A_(1+TM =t —’@
4fdx

A 2\ D
Inthe converging portion of the aforementioned nozzle, dA < 0. Since (ITJ > 0, Alis positive throughout
the entire converging region, and M remains subsonic.

At the nozzle throat, dA = 0, but (%) > (0, so that Aremains positive and M must still be less than unity.

The transition to supersonic flow occurs where A :20 and, in that case, equation 4 reduces to
dA  yM? (4fdx
—=—(—1>0
A2 ( D O,

' " L dA " - N -
+ Equation 5 shows that at the critical location, e 0. Accordingly, the critical location is in the diverging
portion of the nozzle, downstream from the nozzle throat.

Similar results may be demonstrated for heat addition and mass addition in a converging-diverging passage.
Heat removal causes the critical location to be in the converging portion of the nozzle.

When more than two driving potentials are acting simultaneously, the analysis becomes more complicated,
but the general features of the flow may be determined from equation 1 in a similar manner.

For example if we consider a case consisting only of friction and area change which can be a
flow through a nozzle converging divergent passage with friction. Then what you will see all

of the drag and change there is no heat addition or mass addition. Then you have a term here

b0 4oy () )

If there was no friction at all then its only due to changes in area and we know that the critical

point occurs at the minimum area which is at the throat.

But if there is friction also added along with that then critical point should occur when A =0

So, if you get the minimum point minimum point is dA = 0 that is at the throat but still if you

consider friction (ﬁ% ) is greater than 0. So, A remains greater than 0. So, A remains

positive. So, Mach number should be still it should be subsonic.

So, A = 0 achieved at M = 1 That is the critical point and this you can you will be able to

. M - . .
achieve when %44 = YT [(ﬁ%C )] . Now this term is greater than 0 that means ‘f‘f- >0 that

means the choking ,when you consider a both area and friction choking will happen in the

divergent passage, slightly downstream of the throat.

So, this can be this is a result that comes out of considering multiple parameters. Similarly we
can consider heat addition or mass addition. So, the idea here was to introduce the topic of
generalized quasi 1D and show that you can actually do the generalized solution where

different driving potentials can be considered together and we can look at solutions of them.



These are useful for doing initial engineering calculations before going on to more say CFD

kind of approach or an experimental kind of approach.

You want to quickly know what will happen when you have both friction, heat addition and
area change happening which is typical to say propulsion devices or nozzles or diffusers in
real flows. An idea of how they would behave can be understood with the help of this
generalized 1D flow and further studies can be carried out later by using CFD approaches or

experiments. So, with this we come to the close of discussion of quasi 1D kind of approach.

We have had very elaborate discussions on this approach and they provide you the basic
understanding of gasdynamic flows which is important. But when we are considering more
practical problems, we want to know what is happening to the flow field what are the details
of flow structures and so on. For that we have to use the differential equations and one

particular way is looking at the first we always look an approach towards the inviscid flow.

So, that is what we will be dealing from the next class onwards. In this particular course we
will not go into high fidelity models like CFD or and so on. But people have been looking at
approximate methods, potential flows and such approaches. We will look at them and see;
what are the important results that come from such an approach in the coming classes. so,
there will be looking at complete flow field instead of such approximation that flow is
uniform across a particular cross section. So, with that we end the quasi 1D discussion.

Thank you.



