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Lecture 46
1D Flows with Heat Addition Rayleigh Flows - 1T

So we are looking at 1D flow with heat addition which is Rayleigh flow. The previous class
we looked at the Rayleigh line or Rayleigh curves. So, in a Pv diagram it is a straight line
while in a Ts diagram it has a curve.
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Previously

+ Rayleigh Flow Curves

Now

+ Rayleigh Flow Relations

And it is very good to know the nature of this curve, it has 2 branches and 2 critical points.
So, this point is where temperature is maximum and this is a point where entropy is
maximum. So, this corresponds to a Rayleigh curve and this is for static conditions you can
also draw the corresponding stagnation conditions and at the point of maximum entropy you

have maximum heat addition also.

These are stagnation lines T, lines, T, each is a maximum. So, the maximum amount of heat
that can be added corresponds to the location of s maximum that is the entropy maximum and
this corresponds to Mach number equal to 1. So, all these upper branch cases are of subsonic
conditions while lower branch corresponds to supersonic conditions. So, when heat is getting
added in a subsonic flow the velocity increases, Mach number increases it drives it towards

sonic conditions.



This is the subsonic branch for the stagnation conditions and supersonic branch for the
stagnation conditions. Now in the subsonic flow you also have the maximum enthalpy point

or maximum temperature point. So, the temperature initially increases until T, and

thereafter it decreases to s, that is to the max critical point. While in supersonic flow the

max
temperature keeps increasing, pressure keeps increasing, velocity and Mach number decrease

in the supersonic flow.

So, being able to draw these curves effectively will be a nice way to look at problems in
Rayleigh flow and then also understand them properly.
(Refer Slide Time: 03:02)

. " c" 1,
The Rayleigh flow . R
.—5__'________,
c ‘ - o
. Lookmgfmequanonfor_ “ *  Looking for equation for— gV, 5%
+§ \ "
* Momentum equation T \ ( . T _Pp Pcd
P,- Py = V2 - ¥} L\J syt £ AT
2 2)f2 2 Q P V; ’T' 1’
* But, pu’ = paM ’P "M = + Using continuity equation = 2 =222
noAh ';_
yPM? _ i
< Momentumequatiqn ) E MZEZ Mz Tz 2 Tﬂ F
P, = Py = YPM{ - yP, M} ¥y Mm M1 T1 V" =
+ hence, T, PM, (T
P, 1+yM? 221 _2
2= L / Tl P1M1 T
P1 1+YM§ 2 \/2
Tl PZ Mz 1+\(M12 %
T M, Treymz) \My

So, now we go to the equations and see how we can get various quantities for a flow. So, if

there is a 1 Dimensional flow and the heat is getting added to this at a certain rate and flow is

occurring. So, it is having M, at this point, M, after a certain point. So, pressure temperature
PZ T2

similar. So, just as we did for other flows for Fanno flow we are looking at ratios, %>, 7,
1 1

and so on.

In this case we directly go and look at the momentum equation it is an inviscid flow.
So, P+ p u? = constant,

P, +py u
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Now if you take out P as common. this will be,



P(1+yM?) = constant
P,-P, = YP1M% - szMi

From this you can easily get what is %
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So, we get z* .Now we are looking once 7* is got, we can look at =* and for = we use
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the continuity equation and equation of state together. So, because p;u; = p, u, and we

also use P = p RT combine them together. So, that the continuity equation can be expressed in

terms of pressure and temperature rtho is p = {—T )
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So, from here we can get =* as
1

| o
5

olb
Il

= |3
Il
|

=

So, we use all these here.

So, finally % can be expressed ,
1
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So, once we know both = and T—2 g_z = % % can be easily got by equation of state.
1 152
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The Rayleigh flow
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Now what about stagnation quantities ?
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So this is what we will we need to get. So, this you will get
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So that is how we get.
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Rayleigh flow
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Here, next we look at —* it is a same principle.
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So, we can now write the expression for —* . So, using these set of equations we get —*,
01 1

% , % and % , % . So, but the main principle here when we look at Rayleigh flows is
1 1 01 01

that the heat added q = Cp(T, - T,,). So, when we solve some problems this connection will

become clear.

But now if you look at these equations it must be clear the suppose all the initial values are

given you know M,, T, and you know the amount of heat added q then T, can be found out.

Then % = can be evaluated. M, is known. So, we need to find M, but we get an equation
01

which is not easily solvable, is analytically difficult to solve this in directly. So, the way

ahead is similar to what was done in Fanno flows.
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Sonic Conditions

+ We now go directly to the step of normalizing the parameters w.r.t. their sonic
values.

* Note that, here, the sonic values are fundamentally different from the adiabatic
sonic condition values described before

+ Here, we are talking about heat addition, which is not an adiabatic process.

You look for a reference condition and for a Rayleigh flow there exists such a reference
condition in the maximum entropy point s max which corresponds to Mach number equal to
1. So, for Rayleigh flow it is possible to take the reference as the condition where the flow
goes to supersonic values but what we should really underline very much underline is that the
sonic values that is referred to in Rayleigh flow is fundamentally different from adiabatic

sonic conditions.

TO
T*

So, this what was earlier referred to if you had taken for an isentropic flow or an

adiabatic flow they would remain the constant because flow is adiabatic there is no heat being
added. But if you look at the Rayleigh flow this 7" is not a constant it keeps varying it is
different at different conditions. So, it is different from the adiabatic case but what you should
understand here is that for a given Rayleigh curve or for a given Rayleigh flow which implies
that G is a constant which is true with a 1D flow, steady 1D flow the mass flux will be

constant.

And P + p u? = constant . So, these are the 2 conditions which goes in evaluating this
Rayleigh curve. So, for a given Rayleigh curve, this point is a unique point. So, that should
be understood. So, if a flow process in a duct falls in a Rayleigh curve then it will have a

unique start point or a sonic point.
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Problem Solving Procedure TG
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So, how do we evaluate it take the Rayleigh flow equations that you already have found out

which is % s % s z—z and in that you substitute P2 =P, T2 =T and P1 = P* and T1 =T*
1 1 1

then we get
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So, if you want to express —= , this can be represented as ,
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Similarly —=
Tl
T
L _ 2
T, g
T*

So, once this T* this evaluation is done then we can represent any ratios in terms of the sonic
conditions. And the advantage here again we are able to, we plot all these values in terms of

tables or they are available through calculators.

So, that is the ease of using these reference conditions. So, always the flow drives the thing
towards in Rayleigh flow it flies drives it towards a sonic condition. So, always heat addition
achieves sonic conditions. So, how do we go about solving this problem suppose we know
the conditions initial conditions pressure P, , T, and M, are known then and heat added is

known q is known.



So, the basic equation is q = Cp(T, - T,,).. Then if we know the pressure, temperature and

Mach number we can find the stagnation properties T, using the expression ;—‘1’ or %

Similarly you can find stagnation conditions at initial. So, Py, and T, can be found. Then T,

can be found by using this particular equation relating heat added to the change in total

enthalpy.
Then % can be expressed. And this can be,
01
QZ
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70
and once we are able to find —* ,we can use tables or calculators to find value of M,. So,

once M, is known all other quantities can be determined. So, that is how the algorithm or the
recipe to solve these problems.
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Correlation with shocks

The end points before and after a normal shock
represent states with the same mass flow per unit
area, the same impulse function, and the same
stagnation enthalpy.

A Rayleigh line represents states with the same mass
flow per unit area and the same impulse function. All
points on a Rayleigh line do not have the same
stagnation enthalpy because of the heat transfer 93
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Now we go to the discussions where we look at it is a 1D flow similar to Fanno flow in
Fanno flow we looked at if the inlet flow is supersonic. Then is there a possibility that shocks
can occur in the context of Fanno flow similarly we look at the point whether shocks can
occur in a Rayleigh flow and the analysis is also very similar .
Shock equations are,

piy = py Uy =G

And

P, +py u

— 2
1 =P,+p, u

2



So, this is G and this is a constant this is true for Rayleigh flow also and of course h, is

constant for a shock.

So,

h+ % = constant

but can this be located on a Rayleigh curve ? Yes its all the first 2 it satisfies the first 2
equations which are the ones with which actually plot the Rayleigh curve. So, it will satisfy
the Rayleigh curve. Now what one has to do if we have look at locating a shock on a

Rayleigh curve is to look at not just the static conditions but also the stagnation curves.

Here you can see the stagnation curves there is a lower branch and an upper branch. The scale
makes it look almost similar but they are slightly apart and what we look at is draw a constant
h curve because that is what satisfies a shock ,constant h. So, one constant h curve is drawn it
cuts the lower and upper branches at particular points on the stagnation lines. So, they have
the same stagnation temperatures, stagnation enthalpy and look at the corresponding points

on the Rayleigh curve.

So, they will correspond to the shock points on a Rayleigh curve. So, this is point before the
shock that is one and this is point after the shock. So, if you correspond to this one this is
point 2 and this is point 3 . So, that is the point. So, you can locate a shock in a Rayleigh
curve. This also brings about an interesting point in Fanno curve, we have seen that in case a
shock appeared in a Fanno curve then it had an effect on the maximum length of the duct that

can we had for achieving sonic conditions and that was achieved.

So, there in the Rayleigh curve, what you were in the Fanno curve the appearance of a shock
actually increased the maximum length . So, if you sort of look at that and remember it. So, it
will be that is wrong. So, T s for a Fanno is like this and if a shock appears then the
maximum length it included a supersonic length and a subsonic length and that was total

length could be higher.

But what about in the case of a Rayleigh curve will it change the maximum heat that can be
added which corresponds to this particular point. So, if you take any point from a supersonic

solution say point 1 and this corresponds to point 4 and this is the maximum heat that can be



added. If a shock appears anywhere in between, will it change the maximum heat that can be
added and that undergoes no change because a shock does not affect the enthalpy, the

enthalpy is constant across the shock.

So, you take at any location it just changes the flow from supersonic condition to subsonic.
So, it moves like this. So, it goes up and goes over like that but it does not change the total
heat that is getting added.

(Refer Slide Time: 20:51)
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So, now if you look at the point that if you consider both a Fanno occur and a Rayleigh curve
Fanno curve also has shocks associated with it and Rayleigh curve also has a shock
associated with it, is there any correlation between these 2 is there any connection between 2?

If you look at Fanno curve what it considers is p,u; = p, u, and adiabatic flow

u w
h+=5=h+ 3

This is Fanno flow.

2

— 2
1 =P, +p, u

While Rayleigh considers pyu; = p, u, and P, + p; u 5
Now if you take them together both satisfy p,u; = p, u, and also it satisfies total enthalpy

remaining constant and momentum also remaining constant, P, + p; u?

* =P, +p, uj So,if

you take all of them together it satisfies all the conditions of the shock.



So, an intersection of a Fanno curve with a Rayleigh curve is nothing but the shock. So, you
can locate a shock at intersections of Fanno curve and the Rayleigh curve. And for a Fanno
curve the stagnation temperature remains a constant. So, the stagnation temperature reference
for both the Fanno and the shock are the same. While in the Rayleigh it actually cuts across
the 2 branches. So, if you consider Fanno curve, Rayleigh curve and the shock all of them can

appear as intersections of each other.
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Thermal Choking | oo

Ty = constant

P, = constant —_—

* Figure shows a given duct fed by a large tank and Va0 I U foed

converging nozzle. Once sufficient heat has been ) i
added, we reach Mach 1 at the end of the duct. ? . WL
The h —s diagram for this is shown as path 1-2-3. ’,,j; Ey

This is called thermal choking.

if we add more heat to the system. The only way
that the system can reflect the required additional
entropy change is to move to a new Rayleigh line
at a decreased flow rate. This is shown as path
1-2'-3" - 4 onthe h - s diagram.

Whether or not the exit velocity remains sonic
depends on how much extra heat is added and on
the receiver pressure imposed on the system.

So, now we come to another important point which is that there is there . So, there is a
location of maximum temperature or maximum heat added which is maximum heat added
can be located along the stagnation curves. So, it will correspond to this particular point of
maximum entropy , corresponds to that. So, we are considering. So, let us take a subsonic

flow in the subsonic flow that is the point here 2,0 that is the stagnation point and heat is

being added.

So, as heat gets added it is driven towards sonic conditions and if it gets it continues to be
added and reaches the maximum heat addition point which is T, maximum then you cannot
add any more heat beyond this point. So, that is known as thermal choking. So, we have
discussed mass flow rate choking in the context of variable area ducts and friction choking

which relates to the length of the pipe that in frictional flows or Fanno flows.

Now we come to in the case of thermal Rayleigh flows you have thermal choking where flow
achieves Mach number 1 due to heat being added and that is the maximum amount of heat

that can be added. Suppose you want to add more in the case of a subsonic flow. Then exactly



similar to what happens in a Fanno flow condition you can have 2 cases one is that if you

want the flow to remain on the same Rayleigh curve.

Then the point 2 should be shifted to some other location 2" where now there is scope
available for adding more heat but this implies greater pressures, so, more pumping and so
on. The other solution that can occur is simply the flow just shifts to another Rayleigh line
where G is smaller, G decreases that means mass flow decreases. So, this is a 2" here where

mass flow rate has decreased but now it can allow larger heat to be added.

So, basically when choking happens if you try to change anything at a choking point it
always affects the upstream.
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Thermal Choking

* Figure shows a Mach 3.53 flow that has;—:, = 0.6139. For a given total temperature at this
section, the value of :—;’ is a direct indication of the amount of heat that can be added to the choke
point.

+ If a normal shock were to occur at this point, the Mach number after the shock would

+ be 0.450, which also has% = 06139,
0

* Thus the heat added after the shock is exactly the same as it would be without the shock

Normal shock

é M>1 W<t 5 M>1 % Mel
. g

M=353 M =353 M=0450

T
%:nmq M=1 f‘:‘:umm g M=1

Same heat transfer

Now what happens if it happens in a supersonic case, then in the supersonic case can a shock
change the location of the maximum heat transfer, it cannot change because shock is a
constant total enthalpy process or constant stagnation enthalpy process. So, that would not
change, location of a shock would not change the maximum heat being added it still has to

change upstream conditions in order to change the total amount of heat that is being added.

But the appearance of a shock allows upstream propagation of information. So, that can
change things. So, once the subsonic flow appears then it can change things regarding
pressures and how they are felt upstream. So, that can happen .
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Influence Coefficient

* Influence Coefficients for simple Rayleigh flow in
constant area duct
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So, now again we can look at influence coefficients here the driver is change in stagnation

temperature dT, which is related to function of the amount of heat added. So, dTT - is the
0

driver here based on this we can look at what happens to & - -‘f} and the procedure

for getting these influence coefficients is the same you write down all the equations

corresponding to the conservation of equations as well as the ideal gas law P =p RT.

What is Mach number? M = -% and so on. And then club all of them together take them

simultaneously in a matrix form and from there you can express every other function in the
dr,
T 0
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with respect to only as the driving potential or driver.
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So, if you look at that then how do, these properties change? We have already gone through
them. If heat is getting added in subsonic, flow Mach number increases in a supersonic flow
Mach number decreases ,pressure decreases in a subsonic flow temperature will increase as

long as Mach number is less than :/]? .

But then after —= , for Mach numbers greater than == temperature will decrease but in the

VY NY
case of a supersonic flow the temperature will always increase. So, it will continuously
increase, pressures will increase and velocity decreases in a supersonic flow but increases in a

subsonic flow. So, and always entropy increases in this when we consider heat addition.

And nothing stops us from removing heat if you remove heat then all the processes get
reversed. So, with that we come to an end of the discussions on Rayleigh flow. So, we will do
a couple of numericals in order to get a really clear understanding of them and apply these
principles. And with that we come towards the end of discussions of 1Dimensional flows. So,

next class we will look at a couple of numericals.



