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Lecture   22   

Waves   of   Infinitesimal   Amplitude     
  

So  this  module  we  are  looking  into  details  of  unsteady  flow  in  one  dimension                

and  we  are  taking  the  shock  tube  problem.  And  we  had  discussed  in  the                

previous  class  the  various  flow  features  that  are  encountered  in  a  shock  tube.  It                

starts  with  the  initial  condition  that  there  are  two  sides  to  a  shock  tube.  It  is                  

essentially  a  tube  you  have  the  high  pressure  side  which  is  called  the  driver  side                 

and   you   have   the   low   pressure   side   the   driven   side.   

  

And  at  t  =  0  the  interface  between  do  these  two  sides  is  suddenly  ruptured  or                  

taken  away  you  have  very  high  pressure  being  interfaced  to  very  low  pressure               

gas,  high  pressure  and  low  pressure.  This  high  pressure  differential  essentially             

creates  a  shock  and  shock  moves  into  the  driven  section.  You  have  other  waves                

and  flow  features  also  in  the  shock  tube  in  expansion  fans  move  towards  the                

driver  section  and  the  region  in  between  which  is  a  interface  between  the  driver                

gas  and  the  driven  gas  shock  process  driven  gas  is  the  contact  surface  of  contact                 

discontinuity.   

  

The  shock  as  it  goes  through  the  driven  section  compresses  the  gas  as  well  as                 

carries  gas  along  with  it,  it  produces  mass  motion.  So  our  idea  here  is  to  look  at                   

this  complete  problem  and  solve  various  regions  and  then  put  them  together  to               

look  at  the  shock  tube  as  a  whole.  So  the  first  part  of  this  is  the  moving  shock                    

that  is  already  covered.  So  now  let  us  start  moving  into  the  left  hand  side  of  the                   

shock   tube   that   we   have   been   looking   at   which   is   the   waves.     

(Refer   Slide   Time:   02:41)   



  

So,  the  expansion  waves,  so  expansion  waves  before  we  go  there  we  start  with                

simple  waves,  waves  of  very,  very  small  amplitude  waves  of  infinitesimal  small              

amplitude  very  small  amplitude  and  look  at  the  analyses  of  those  waves.  They               

are  representative  of  sound  waves  and  you  can  soon  we  will  show  their               

equations  are  contained  within  the  system  of  flow  equations  that  we  are              

discussing.   

  

So,  there  is  a  general  equation  of  motion  for  an  invisible  adiabatic  flow.  So  this                 

is  an  invisible  flow.  So  viscous  effects  are  not  considered  it  is  a  compressible                

flow.  So  we  have  the  compressible  equation,  so  .  This  is          .  ∂t
∂ρ + ∇ ρV( →) = 0    

continuity  and   .This  is  momentum  and  this  movement  of  these    Pρ Dt
DV

→

=− ∇          

waves   are   isentropic.   

  

So,  s  is  so  entropy  does  not  change,  .  So  consider  a  quiescent  medium          Dt
Ds = 0       

where  there  is  no  initially  there  is  no  velocity  and  some  small  disturbance  small                

changes  in  density  or  velocity  or  pressure  is  introduced.  So   𝛻 ρ  and   𝛻u  small                

very  small  changes  in  density  and  velocity  are  introduced.  So  they  are  small               



perturbations  and  so  the  undisturbed  or  the  quiescent  flow  medium  has   and             ρ∞   

  ,   and     as   properties.  u∞ P ∞ T ∞  

  

And  if  you  take  a  quiescent  medium,  0.  So,  now  what  we  are  trying  to  do         u∞ =           

is  to  see  how  this  these  small  changes  propagate  in  the  medium  and  we  consider                 

only  the  one  dimension.  So  we  are  only  considering  one  dimensional  case  here.               

So  let  us  write  the  equations  for  these  small  perturbations.  So   ,  the  change  in             ρ      

 is   actually  is   +   𝛻 ρ,  u  +   𝛻u  which  is  since  is  0  is  basically   𝛻u  ,  ρ   ρ    ρ∞    u=  ∞       u∞       

u    𝛻u   .  =   

  

Now  the  guiding  principles  here  is  that  we  consider  changes  to  be  or  the  terms                 

in  the  equations  to  be  significant  if  you  have  significant  terms  multiplications              

like   ,these  terms  are  significant.  But  if  you  have  multiplications  of  small   ∂x
∂∇u             

quantities   ,   𝛻 ρ  these  are  both  are  small  quantities,  two  small  quantities   u  ∇             

multiplying   each   other   they   become   very,   very   small   so   they   are   taken   to   be   0.   

  

So  this  is  the  guiding  principle  and  once  you  apply  these  principles  to  the                

equations  then  we  can  see  how  they  get  transformed  through  the  evolution              

equation  for   𝛻 ρ  or   that  is  the  small  perturbations.  We  take  the  continuity      u  ∇           

equation,      ∂t
∂ρ + ∂x

∂(ρu) = ∂t
∂ρ + ρ ∂x

∂u + u ∂x
∂ρ   

So  now   =   +   𝛻 ρ  and  u   𝛻u  .  So,  we  get  these  terms.  Now  this  is  directly    ρ   ρ∞     =              

by  substituting  these  values  into  the  equation  and  now  we  can  use  these               

principles.  So  you  see  that  there  is  a   𝛻 ρ  here  this  term  is  significant   is  the                ρ∞    

quiescent   medium   density   this   does   not   I   mean   this   is   a   constant.   So,    .   ∂t
∂ρ  ∞ = 0   

  



So  you  can  use  those  principles  here.  So  now  if  you  look  at  this  a  multiplication                  

of   𝛻 ρ  is  going  to  be  extremely  small  so  that  is  not  significant.  And      ∂x
∂(∇u)             ρ∞  

   ,   partial   derivative   is   significant.   ∂x
∂(∇u)   
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So   using   these   guiding   principles   we   can   write   down   this   equation   in   terms   of     

  .  And  you  have  the  other  term,    ρ u  ∂t
∂(∇ρ) + ρ∞ ∂x

∂(∇u) + ∇ ∂x
∂(∇u) + ∇ ∂x

∂(∇ρ) = 0         

 ,   this  term  is  also  extremely  small.  Now  so  this  yields  ρ ∇ ∂x
∂(∇u)   u ∇ ∂x

∂(∇ρ)            

basically     This   is   what   this   equation   yields.    ∂t
∂(∇ρ) + ρ∞ ∂x

∂(∇u) = 0  

  

Now  if  you  take  the  one  dimensional  momentum  equation             u   ρ ∂t
∂u + ρ ∂x

∂u =− ∂x
∂P  

.  Now  this  being  an  isentropic  flow;  so  pressure  can  be  related  to  density  by  the                  

term.  So  P  is  a  function  of  rho  in  general  you  can  write  P  as  a  function  of  rho                    

and   s,   P   =   P( ,   s).   If   so  ρ  

  .  p  dρ ds  d = ( ∂ρ
∂P )  

s
+  ( ∂s

∂P )ρ  

So  here  ds  =  0  so  its  isentropic  flow  and  this  term  dou  P  by  at  constant                   ( ∂ρ
∂P )  

s
  

entropy,  this  is  nothing  but  speed  of  sound  .  So  this  term  can  be  brought          a2        

inside   the   equations   and   thereby     can   be   converted   to       .   ∂x
∂P  a2

∂x
∂ρ   
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So  that  is  what  is  done  here.  So  it  is  been  converted  to  the  changes  in  density                   

and  now  if   in  general  can  be  a  variable.  So  but  for  the  quiescent  medium      a2              

there  is  a  speed  of  sound  which  is  corresponding  to  the  temperature   you          a∞      T ∞   

know  is   Now  if  there  are  small  changes  to  pressure,  temperature,   a∞   √γ R  T .∞           

density  correspondingly  ,we  would  expect  small  changes  to  .  And  therefore          a∞    

we   need   to   consider   them   into   the   equations   also.   

  

So  now  you  can  write  considering  so  now   =   +   𝛻 ρ,  ,  u  𝛻u  and  you  can          ρ   ρ∞     =      

substitute  them.  Again  follow  the  same  guiding  principles  that  such   𝛻 ρ,   𝛻u              

these   terms   are   very   small.     
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So  there  are  two  significant  terms  over  there.  Now  this  is  very  weak  waves,                

infinitesimally  small  amplitude,  very,  very  small  perturbations.  Now  a  that  is  a              

is  again  that  speed  of  sound  is  a  thermodynamic  quantity.  It  can  also  be  written                 

as   a   function   of   density   and   entropy,   

 a  =a( ).  Now  entropy  is  constant.  So  it  becomes  a  function  of  density  and  it    , sρ                

can  be  expanded  by  a  Taylor  series  kind  of  an  expansion.  a  square  is  a  infinity                  

square   plus   dou   a   square   by   dou   rho   rho   minus   rho   infinity.   

 …a =  a∞2 +  ∂ρ
∂ a2

(ρ  ρ )−  ∞ +   

So  is  basically  the   𝛻 ρ  and  higher  order  terms  which  are  very  small.  Now  this                 

term  here  can  be  substituted  for  in  the  momentum  equation.  But  again  we        a2         

find  once  you  carry  on  the  multiplication  you  have  small  quantity   𝛻 ρ  .  So              ∂x
∂∇ρ   

they  are  again  very  small.  So  finally  the  most  significant  terms  of  the               

momentum   equation   is   (- )   .    a∞2
∂x

∂∇ρ  
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So  you  have  two  equations  the  first  one  comes  from  continuity  and  second  one                

comes  from  momentum  and  these  equations  are  now  the  equations  for  evolution              

of  an  extremely  small  perturbation  in  quiescent  medium  and  that  is  typical  of  a                

sound  wave.  And  can  we  get  the  equations  of  sound  wave  from  here  ?  You  can                  

do   that.   You   can   just   so   if   you   take   a   partial   derivative   with   respect   to   time   here.   

  

For   this   equation   and   take   partial   derivative   with   respect   to   x   here.   so   you   get,     

   
∂t2

∂ ∆ρ2

=  − ρ∞ ∂x ∂t
∂ ∆u2

 

  

  and     .   And   comparing   these   two   equations   you   get,  ρ    a   ∞ ∂x ∂t
∂ ∆u2

=  −  ∞
2

∂x2
∂ ∆ρ2

=   

  

  a  
∂t2

∂ ∆ρ2
=  ∞

2
∂x2

∂ ∆ρ2
 

  

which   is   what   is   written   here   is   nothing   but   a   wave   equation.   

  

Wave  equation  where  the  speed  of  the  wave  is   which  is  the  speed  of  sound            a∞2        

waves   in   that   particular   medium.     
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So   the   solutions   to   these   equations   in   general   are   of   the   form,   

 ,that  is   that  small  change  in  density.  You  ∆ρ F G   =  (x  t)− a∞ +  (x  t)+ a∞     ρ∆        

can  get  the  same  equation,  the  same  wave  equation  for  the  change  in  velocity                

  and   these   are   given   ,  u∆  

 u f g  ∆ =  (x  t)− a∞ +  (x  t)+ a∞  

This  is  the  solution  to  the  wave  equation.  So  where   ,            and   (x  t)− a∞  (x  t)+ a∞   

they  represent  the  directions  of  propagation  of  an  initial  disturbance  so  that  is               

given   over   here   you   can   see.   

  

So  this  is  the  initial  propagation.  So  they  move  in  this  direction.  So  you  can                 

write  down  these  solutions.  This  is  normal,  I  mean  this  is  the  wave  equation                

that   is   linear   and   solved   in   classes.     
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So  now  let  us  see  how  the  various  quantities  that  is  density  and  velocity  they  are                  

related  to  each  other  as  well  as  changes  in  pressure.  So,  when  you  look  at  them,                  

so  if  you  say   consider  for  a  general  case  let  g  be  equal  to  0.  that  is  the  small      u∆                 

function,  function  with  ,  g  =0  then    ,then   =  ,   is         u∆  f  =  (x  t)− a∞   ∂x
 ∂∇u   f ′    f ′   

the   differential   of   f   .     

While,     

   =  ∂t
 ∂∇u f   − a∞ ′  

  So   from   comparing   these   two   we   get,   

        ∂x
 ∂∇u =  a∞

 1−
∂t

 ∂∇u   
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So  now  this  can  be  combined  along  with  the  continuity  equation.  So  continuity               

equation   is,   

 ρ  ∂t
∂∇ρ +  ∞ ∂x

∂∇u = 0  

  

So,   from   the   previous   equation   you   can   write   this   as,   

 ∇ρ  ∂t
∂∇ρ =  −  ∂t

∂∇u  

This   can   be   taken   together,    ,      and     are   constants.   For   this   problem,  ρ  ∇ ρ∞ a∞  

 (∇ρ   ∇u) 0  ∂
∂t −  a∞

ρ∞ =   

So   this   implies   that,   

                                                 =   constant  ρ   ∇u  ∇ −  a∞
ρ∞  

   

Now  this  constant  can  be  evaluated  by  taking  the  equation  for  the  undisturbed               

gas  and  there  when  you  started  off  with   and   both  were  zeros  hence  at          ρ  ∇   u  ∇       

initial   this   is   0   therefore   it   is   constant.   So   this   constant   is   0   and   so   it   relates,   

  .  u   ∇ρ  ∇ =  ρ∞
a∞  

  

So  this  is  the  equation.  So  you  can  evaluate  how  much  change  in  velocity  is                 

produced   by   a   small   change   in   density.   
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Now   because   this   is   motion   of   sound   ,     

    a ∇ρ
∇P =  ∞

2  

Small   pressure   perturbations.   You   can   use   that   and   relate   change   in   velocity   to   
change   in   pressure.   So   in   general   so   we   started   off   with   the   general   equation   

 u f g  ∆ =  (x  t)− a∞ +  (x  t)+ a∞  

 and  we  set  g  =0.  We  can  also  set  f  =  0  and  get  other  forms  of  this  equation.  So                       

in   general   you   will   get,   

   ;     u ±   ∇ρ  ∇ =  ρ∞
a∞ u ±    ∇ =  ∇P

 a ρ∞ ∞
 

  

So  these  are  very,  very  small  changes  what  we  are  talking  about  in  this.  So  this                  

is  infinitesimally  small  and  they  these  are  corresponding  to  sound  waves  which              

is  very  small.  And  when  pressure  increases,  density  increases  in  the  sound  wave               

that  is  compression.  So  that  is  a  compression  part  of  the  sound  wave  and  when                 

the   pressure   decreases   then   that   is   called   the   rarefaction   part   of   the   sound   wave.   

  

So,  this  some  of  these  things  known  to  you  but  now  we  have  seen  that  these                  

waves  are  also  part  of  the  fluid  dynamic  equations  that  we  have  for  the  general                 

fluid  flows.  And  we  saw  how  waves  fit  in  there  and  these  waves  are  extremely                 



small  in  amplitude.  Now  we  move  on  in  the  next  class  we  will  move  to  finite                  

amplitude  waves  where  waves  now  have  significant  strength  in  there  pressure            

changes   or   density   changes   or   velocity   changes.   

  

Now   in   this,   what   you   noticed   was   that   you   get   finally   the   wave   equations.   So     

  a  
∂t2

∂ ∆ρ2
=  ∞

2
∂x2

∂ ∆ρ2
 

This  is  a  wave  equation  with  speed  of  sound  that  is  a  constant.  So  this  is  the       a∞             

case  of  infinitesimal  waves.  When  we  go  to  finite  waves  we  see  that  this  speed                 

of  sound  at  that  is  not  a  constant  anymore  it  can  change  from  point  to  point  time                   

to   time.   

  

So  that  is  going  to  be  the  additional  complexity  that  comes  into  picture  in  this  if                  

there  was  an  initial  waveform  it  just  propagates  along  these  lines.  These  are               

lines  of  propagation  they  are  also  known  as  characteristics.  And  this             

methodology  that  is  the  way  they  propagate  along  certain  lines  known  as              

characteristics  will  be  very  useful  when  we  look  at  finite  amplitude  waves.  Here               

and   represent  two  sets  of  characteristics  along  which  the   (x  t)− a∞   (x  t)+ a∞           

solution   propagates.   

  

Since   is  constant  here  these  characteristics  are  straight  lines  but  when  we  go   a∞              

to  finite  waves  we  will  see  that  that  need  not  always  be  true.  So  in  the  next  class                    

we   will   go   to   finite   amplitude   waves.   

  

  


