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Normal Shock - II a 

  

So in the previous class we had a introduction to shock waves and we learned that these waves, 

shock waves, are present only in supersonic flow. This is something that you have to bear in 

mind throughout this course that shock waves exist only in supersonic flows. We saw through 

a simple kind of examples or analogous example that presence of non-linearities actually sort 

of allows compression waves which are not really very strong. 

These compression waves can coalesce with each other due to a process known as wave 

steepening this because of the non-linearities in the flow. Where flow variables are affecting 

each other, and the solution is dependent on flow variables and because of that they coalesce   

to each other and form a shock. Shocks are very very thin so when we look at gas dynamic 

analysis, we do not actually consider these shock waves, but they are considered as 

discontinuities. 

So, they are not considered in solving the flow field and things like that but as discontinuity. 

So, a jump condition across the shock is what is applied when shocks are found in the flow 

field. So now we have to analyse these jump conditions across the shock. So, across a shock 

pressure, temperature and density increases and velocity decreases, Mach number decreases. 

So that is the essential picture. 
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So now we will apply the conservation equations across the shock and here shock is treated as 

a discontinuity is extremely thin. You do not calculate structure of the shock wave. So, this is 

the schematic representation that is given here that you have a very thin shock. And before the 

shock these are conditions this is upstream, and this is downstream. So, you consider 2 states 

upstream and downstream of the shock. For sure the condition upstream of the shock has to be 

supersonic i.e., Mach number should be greater than 1.  

Now this is a one-dimensional flow and there is no heat transfer or work done. So, it is an 

adiabatic flow. Please make a note it is an adiabatic flow. As we do the equations, we will find 

out that shocks generate entropy. So, it is not an isentropic flow, or it is not an isentropic process. 

So, the basic equations that you have to apply here the one-dimensional conservation equations. 

This we have already discussed. And here one-dimensional conservation equation is mass 

conservation, ρ1𝑢1 = ρ2𝑢2,is given over here.  

 

Then momentum conservation in one dimension  

P + ρu2  is constant.  so 𝑃1 + ρ1𝑢1
2 = 𝑃2 + ρ2𝑢2

2 

Then energy conservation ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
 

So, these are the 3 equations along with an equation of state and equations relating 

thermodynamic relations relating enthalpy as a function of pressure and temperature. This is 

the most general form and an equation of state. So, if you have these equations you can solve 

for these 3 equations.  Now if you can see how many generally the upstream conditions are 

known so pressure density temperature and velocity are known.  

 

So, we solve for pressure density temperature and velocity there are four unknowns here. There 

are 3 conservation equations and enthalpy is related to pressure and temperature in a general 

form by some form like this and there is a fourth equation of state. So, we have a consistent set 

of equations. So, this can be solved. This is the most general form. Here no assumptions are 

used, and it can be applied to any gas dynamic flow. So, including if there are changes in the 

Cp and it is not a calorically perfect gas, you can apply these equations in that case also.  

 

But then you may not get closed form solutions in that case. So, for this class we will seek 

closed form solution. So, we can understand something about the nature of these normal shocks 

how they behave with changes in Mach number and so on. So, we will take the assumption of 

a perfect gas and calorically perfect gas in particular. And let us go through the different steps 



to help us relate the various quantities. First thing that we would try to relate is the Mach 

number which is downstream of the shock to the upstream Mach number. 

 

And the relation is for a normal shock and normal shock is normal to the direction of the flow 

and for that it is always that the downstream Mach number is subsonic and upstream Mach 

number is supersonic. So how do we go about this process? 
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So first we consider that the continuity equation ρ1𝑢1 = ρ2𝑢2. And the direct relation that 

comes about from here is 
𝜌2

𝜌1
 = 

𝑢1

𝑢2
.  Now we can keep this bear this in mind. Now second 

equation, so you if you look at the methodology that is followed over here, you see that this 

process is completely, I mean simultaneous, or you have to solve them together.  

You cannot solve them separately you still do not know any variables as of now but we can 

through algebraic manipulations of these equations we can get to some relations which will 

help us to get to the final normal shock relations. So, if you consider the momentum equation 

𝑃1 + ρ1𝑢1
2 = 𝑃2 + ρ2𝑢2

2  and divide this by the corresponding mass conservation equation.  

So, I divide everything by the mass, but mass flow is constant. so I can divide this because ρ1u1 

= ρ2u2, I can do this and on both sides of the equation. So, I get these terms P1 by rho1 u1. So 

this comes out 
𝑃1

ρ1𝑢1
+ 𝑢1 =  

𝑃2

ρ2𝑢2
+ 𝑢2 . Now if you look at this and you identify in the 

equations here there is a combination 
P

ρ 
 . 𝐻ere there is a combination 

𝑃2

ρ2
 and we know that for 

a perfect gas 𝑎2 =
𝛾𝑃

𝜌
   .So, we will try to see how we can bring this information into this 

equation and you can do that by multiplying and dividing by  γ and 
𝛾𝑃

𝜌
  is a factor here. This is 



one factor here a group and so you can write this as   
𝑎1

2

γ𝑢1
+ 𝑢1 =

𝑎2
2

γ𝑢2
 +  𝑢2. Now at this you 

can even do a sort of change of you can write this only in terms of 𝑢1 - 𝑢2  is 

 𝑢1 - 𝑢2  = 
𝑎2

2

γ𝑢2
 -  

𝑎1
2

γ𝑢1
 . 

Now here we can introduce the using the alternate form of the energy equation which is  

a2

𝛾-1
 + 

u2

2
 =  

a*2
 (𝛾+1)

2(𝛾-1)
  .  

This is the alternate form of the energy equation that we had discussed in terms of the sonic 

quantities. So, from here you can write a2  =   
a*2

 (𝛾+1)

2
 -

u2 (𝛾-1)

2
.  

 

So now the process is just to use this in this particular  equation. Import it here so you can get  

𝑢1 − 𝑢2  =
1

γ𝑢2
[
γ + 1

2

𝑎⋆2

1
−

γ − 1

2
u2

2] -   
1

γ𝑢1
[
γ + 1

2

𝑎⋆2

1
−

γ − 1

2
u1

2] 

 

So you get this equation over here now we will just consider just the right hand side for 

simplification and try to simplify that part. 
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So let us look at this. 

Now the principle being used here is this is an adiabatic flow. For an adiabatic flow the sonic 

state remains the same. So, a stars remains the same for both upstream and downstream flows. 



So this, 𝑎⋆ is constant across the shock. So, we have now written it in terms of 𝑎⋆  and we can  

get quantities here common taking these common terms 
γ+1

2γ
 𝑎⋆2  ,  

(𝑢1 - 𝑢2)  =  
γ + 1

2γ𝑢1𝑢2

(𝑢1 - 𝑢2)𝑎⋆2 +
γ − 1

2γ
(𝑢1 - 𝑢2) 

 

So this term turns out to be  
γ+1

2γ
.  So you find the common terms are 

γ+1

2γ
(𝑢1 - 𝑢2) and that sort 

of cancels out. You get 
   𝑎⋆2

𝑢1𝑢2
 = 1   or   𝑎⋆2 = 𝑢1𝑢2 . 

 So if you divide this by 𝑎⋆2 , you will get 
𝑢1

𝑎⋆

𝑢2

𝑎⋆ = 1. With this 
𝑢1

𝑎⋆ is something that we already 

know from our previous discussions it is the star Mach number M⋆  . 

 

So this gives rise to the relation 𝑀1
⋆𝑀2

⋆ = 1.  So, this relation is known as Prandtl's relation for 

the normal shock. And it gives us so you can observe these manipulations, algebraic 

manipulations, where all the equations were used simultaneously to arrive at these conditions. 
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And so just to go over these so what we did was that we use the momentum equation and 

divided it by the mass equation as you have done over here and then written that equation in 

terms of the speed of sound over here. And then use the energy equation the modified form of 

the energy equation in terms of the star speed of sound and a star. And the idea is that a star 

remains constant in a normal shock across a normal shock. 

 



So we use that information and import that into the equation here and then do the simplification 

using some algebraic manipulations. And finally arrive at the condition that 𝑀1
⋆𝑀2

⋆ across the 

shock equal to 1. So now we know the upstream Mach number so this gives us a relation to 

find go ahead and find the downstream Mach number. Now this is in terms of star quantities. 

So we can convert this into the Mach number directly into Mach number and that is possible 

so this is all the steps are detailed in the slides which just now we have discussed. So this is 

what we finally arrive at, 𝑀1
⋆𝑀2

⋆ = 1 

. 
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So now let us look at how to get a single relation between this downstream Mach number to 

upstream Mach number. We use the definition of so 𝑀1
⋆ =

1

𝑀2
⋆  and so we can directly use the 

relation for 𝑀2
⋆ that is 

(γ+1)𝑀2
2

2+(γ−1)𝑀2
2 =  

2+(γ−1)𝑀1
2

(γ+1)𝑀1
2   .So you get the inverse. 

(γ + 1)𝑀2
2 =  2 ⌊

2 + (γ − 1)𝑀1
2

(γ + 1)𝑀1
2 ⌋  + (γ − 1)𝑀2

2 ⌊
2 + (γ − 1)𝑀1

2

(γ + 1)𝑀1
2 ⌋ 

                        𝑀2
2 ((γ + 1) - (γ − 1) ⌊

2+(γ−1)𝑀1
2

(γ+1)𝑀1
2 ⌋)  = 2 ⌊

2+(γ−1)𝑀1
2

(γ+1)𝑀1
2 ⌋   

 

𝑀2
2 (

(γ + 1)2 𝑀1
2 - (γ-1)2 𝑀1

2 - 2 (γ − 1)

(γ + 1)𝑀1
2 )  = 2 ⌊

2 + (γ − 1)𝑀1
2

(γ + 1)𝑀1
2 ⌋ 



So, you have these terms are common they will get cancelled. So finally the equation is  

M𝟐 =
1 + [(γ − 1)/2]𝑀1

2

γ𝑀1
2 − (γ − 1)/2

 

 So, you find that M𝟐 can be completely represented only in terms of γ and Mach number 

before the shock. So, now when we look at all other relations shock relations what we will 

observe is that all the properties across the shock can be written only in terms of the upstream 

Mach number and γ . 

 

Further for the conditions that we are taking, which is calorically perfect gas,  γ is a constant. 

If you know the gas then γ is known. So then the downstream conditions of the shock become 

only the functions of upstream Mach number. So now we can relate. So now since we know 

the relation between downstream Mach number and upstream Mach number, we can use this 

to relate all other flow variables.  
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So, let us look at first, we look at the density ratio. So just to go over what we had just done, 

and we have expressed the Mach number that is Mach number downstream of the shock M2 in 

terms of only Mach number upstream of the shock and γ. So, we saw how to go about doing 

this using the Prandtl's relation. Now we will see how we can use the continuity equation to 

relate the density ratios across the shock. 

 

What we need is 
𝝆𝟐

𝝆𝟏
 and 

𝝆𝟐

𝝆𝟏
 that is density increases across the shock and from mass 

conservation equation, ρ1𝑢1 = ρ2𝑢2, you directly get that 
𝝆𝟐 

𝝆𝟏
 is  

u1

u2
. So now if you look and 



multiply and divide by u1 then you get this as 
𝑢1

2

𝑢1𝑢2
. Now  𝑢1𝑢2 from our just recently discussed 

equations, 𝑢1𝑢2= 𝑀1
⋆2. 

 

So, this is 
𝑢1

2

𝑎⋆2
. Now that is what is written over here and 

𝑢1
2

𝑎⋆2
 is nothing but the 𝑀1

⋆2 for the 

upstream flow and star Mach number is written in terms of Mach number itself. 

 𝑀1
⋆2 =

(𝛾+1)𝑀1
2

2+(𝛾−1)𝑀1
2  . So now we see that the density ratio is also 

ρ2

ρ1
is also only function of 𝛾 and 

upstream Mach number.  M2 is function of 𝛾 and upstream Mach number. 

 

So, to just to distinguish I can put this as f1 and f2. So, we will now go ahead and do it for all 

other variables. So, we have pressure ratio, we have temperature ratio, we have to look at what 

happens to stagnation temperature, pressure, entropy generation across the shock. So, each of 

them we will go through in detail and that we will do in the next class and see how these 

variables vary across the shock wave. 

 

 

 


