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Lecture 12 

Pitot Tube 

  

In this lecture we look at a particular application of the stagnation flows or stagnation properties 

that we saw in the previous class which is in flow measurement of compressible flows and that 

is in particularly to the Pitot tube.  
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Pitot tube must be familiar to all; it is a flow measurement technique, it is simple in 

constructions basically a tube. Hollow tube into which the flow coming in, at any particular 

point if you introduce a Pitot tube then the flow that is coming into the tube goes and stagnates 

within the tube and the pressure within at that particular point is measured using any pressure 

measurement system. 

 

The Pitot tube measures the stagnation pressure of the flow. So always it is kept normal to the 

flow direction. So, if you are measuring the static pressure it is always measured parallel to the 

flow direction, or if you are inside some flow with a stack the static pressure is always measured 

parallel. While a Pitot tube measures stagnation pressure, or stagnation pressure is measured 

normal to the flow. When the flow stagnates within the tube then you measure the stagnation 

pressure. So effectively Pitot tubes measure stagnation pressure. But just by knowing 

stagnation pressure we cannot convert that into velocity because that is our final interest to 



know either velocity or Mach number of the flow at that point. Then you also need information 

on the static pressure. 

 

Often this is done by a combination known as the Pitot static tube, which has 2 ports you can 

see that the central port is normal to the flow, which measures the stagnation pressure. Around 

the periphery you have holes through which pressure which is parallel to the flow is measured, 

that is static pressure. A Pitot static tube measures both stagnation pressure and static pressure. 

 

Now how can this; be converted into the information on velocity in an ideal flow? 
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This condition must be very familiar to all, this is the incompressible Pitot equation. In this the 

principle used is directly the Bernoulli equation there are no losses that is the basic definition 

of the stagnation process. This is a incompressible flow so density remains a constant. These 

ρ0, and ρ1 all of them are equal to ‘ρ’ and so you write the Bernoulli equation considering that 

there is no variation in the potential energy. 

 

Then this is directly 
𝑃0

𝜌0
=

𝑃

𝜌
+

𝑣2

2
  and that is, 𝑣 = √

2(𝑃0−𝑃)

𝜌
,  by this equation. So this is for the 

case when density can be taken to be a constant in incompressible flows. When applying this 

in the context of gaseous flows then this is for flows with very low velocity. We have already 

discussed that we consider flows to be compressible or compressibility effects are important 

once Mach number starts becoming more than 0.3. 

 



For all flows less than 0.3 this is a valid equation to use but just in the previous class we saw 

that as Mach number increases if you take the stagnation properties and see they vary very 

rapidly with Mach number. So, this Bernoulli equation can be no longer applied in the case of 

a compressible gaseous flow. Then one has to look at the basic definition of the process itself 

and that is nothing but the Pitot tube. 
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The process happening within the Pitot tube is a stagnation process, where you have the flow 

coming in and it stagnates within the Pitot tube. Once you measure both P0 and P then this is a 

compressible flow now you have Mach numbers which are greater than 0.3 then, have to use 

the stagnation process and under stagnation process the relationship between P0 and P for 

calorically perfect gas is, 

𝑃0
𝑃
= (1 +

𝛾 − 1

2
𝑀2)

𝛾
𝛾−1

. 

 

At this point often when we refer to these Pitot measurements or flow measurements, you have 

to understand various terminologies, Pitot’s are usually used to measure the air speed in flights. 

One is interested there is to know the velocity of air flow and in a consequence to that this often 

is referred to as the free stream velocity or the free stream Mach number and it is generally 

denoted ‘M∞’ that is for the free stream. 

 

This is also often used, similarly flight Mach number is the Mach number of the speed of the 

flight or speed of the object moving in air divided by the ambient speed of sound, 𝑀∞ =
𝑉∞

𝑎∞
. 



But one should also remember that Mach number is a local quantity and if it is getting measured 

at different points on a body then that those Mach numbers can be different. 

 

When one reads certain articles or numericals then you have to be careful with these technical 

words and their distinctions. So now directly we can measure the Mach number by inverting 

this equation we know P0/P which is measured by using the Pitot, then getting Mach number 

is just the inversion of that relationship. 
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But for low Mach numbers we can use a small correction factor. This again refers to the points 

when computational power was quite small but also this gives us a good idea to see when really 

these compressibility effects are becoming significant. That is the ‘Cp’ or the definition of the 

non-dimensional factor,  
𝑃0−𝑃

(
𝜌𝑣2

2
)
 . 

 

If you take an incompressible flow this should actually equal to 1. Now as the flow becomes 

compressible, we see what happens to this coefficient of pressure Cp. Some algebraic 

manipulations can be done over here if you take P outside 

𝐶𝑝 =
𝑃 (
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Now P0/P has an isentropic relation with ‘M’, so you can replace that with the isentropic 

equation. Let us look at small Mach numbers. So Mach numbers are not very large we are 

looking at points where compressibility becomes important that means the speed is low but it 

is becoming high. 



 

So Mach numbers are small, when Mach numbers are small then this quantity is quite small is 

really small. So this expression then is (1+x)n where, n in this case ‘
𝛾

𝛾−1
’ which can be expanded 

using the binomial expansion to 1 + 𝑛𝑥 +
𝑛(𝑛−1)

2!
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3!
𝑥3 +⋯.  

 

After some algebra and substitutions in the binomial expansion form will can get the expansion 

in terms of Mach numbers M2, M4, M6 terms.  
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Upon further algebraic manipulation and substitution in Cp, expression results in 

𝐶𝑃 = 1 +
𝑀2

4
+
2 − γ

24
M4 +⋯ 

Remember that Mach number is small in this particular expansion therefore further all the terms 

are not considered. And so this will give us a approximate method to calculate, but quite good 

to calculate the coefficient of pressure at small Mach number. Here as Mach number changes 

you see that there is a compressibility effect coming into play and Cp changes. 
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Cp the correction for compressibility there it is increasing and typically is if you like at Mach 

number 0.3 that is over here. It is slightly greater than in an increase of greater than 2 percent. 

So this gives an indication. So incompressible flows when the flow velocity increases beyond 

Mach number of 0.3 then one can no longer consider the incompressible Bernoulli’s equation.  



 

One has to consider the compressible ways of estimating the velocity which is using the 

stagnation pressure equation in terms of Mach number or if the Mach numbers are low then 

one can go for a compressibility correction of the kind that has been discussed over here. Then 

estimate the Mach number from the measured stagnation pressure and static pressure. 
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Now just let us look at briefly how these things compare so just by using a simple numerical. 

Calculate the dynamic pressure of the flow if the free stream velocity. As here it has been 

written as free stream velocity which is 175 m/sec. Pressure is 1 atm and temperature is 298 K. 

what is the percentage error in dynamic pressure if the flow is treated as incompressible? 

 

Dynamic pressure is 𝑞 =
1

2
𝜌𝑣2, and from the definition of Cp you can see that this is nothing 

but ‘P0-P’, so (P0-P∞)/
1

2
𝜌𝑣2 .  
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1
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2 (1 +
𝑀2

4
+
(2 − γ)𝑀4
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+⋯) 

 

So if you know temperature and velocity. 

𝑀∞ =
𝑉∞

√γ𝑅𝑇∞
 

 

So, gamma is 1.4, R is 287 J/kg-K, T∞ is 298 K, and V∞= 175 m/sec. M∞ close to 0.5 and that 

can be put into this equation for the compressible correction factor. While here we have 



truncated terms greater than M6 and so on. So, you get q compressible for these 2 conditions 

as 19.1 kPa.  

 

So both are given so you can calculate this and V is known this is 17.9 kPa. Directly you can 

see that there is about 6.3% difference due to compressibility. So once the flow becomes 

compressible one has to use compressible flow equations stagnation processes to calculate the 

velocity or Mach number from the measurement of stagnation pressure and static pressure and 

not by using the incompressible Bernoulli’s equation. 

 

So I think that point is made clear here. So in the next class what we will look at is the star 

condition. So stagnation conditions and star conditions or sonic conditions are important 

critical conditions for a gaseous flow. So next class we look at star conditions. 

 

 


