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Hello, and welcome to Lecture 31. In last lecture, we started discussing about the important 

parameter, what we have defined as a critical velocity ratio or critical Mach number. We realized, 

the operating temperature for compressor and operating temperature for…the temperature for the 

turbine, they both are different. 

Say, my compressor is operating at low temperature; turbine, that’s what is operating at high 

temperature. So, based on our conventional definition of Mach number, if we consider, then for 

compressor, it will always show my flow to be in a transonic range or maybe in supersonic range, 

though it is working under subsonic condition or high subsonic condition. 

Same way, suppose if we consider for the turbine, because in denominator we are having the 

temperature, and that’s the reason why it will always show my flow to be a subsonic flow. And 

that’s what is demanding for special kind of attention. And in order to take care of that, we have 

introduced a parameter called critical Mach number; and this critical Mach number, that’s what 

will give the idea what will be the type of flow within our flow passage for the turbomachinery. 



And that’s what we will be using for our further design calculations. Yesterday, we also were 

discussing about say two different design approaches. First, that’s what we say as a sizing problem; 

and second, we have defined as a rating problem. Sizing in the sense, if we are discussing, we are 

talking about, say new design of engine, or say maybe new design of the compressor stage for our 

industrial application. 

Under that condition, we may be knowing our input parameters, we know what pressure rise we 

are expecting, maybe we can do calculation for what will be the rotational speed and all those 

parameters, that’s what are known to us. And based on that, we need to decide with what will be 

the diameter of my casing, what will be the diameter of my hub, what needs to be the height of my 

blade, what needs to be the chord of my blade, how my flow angles that will be varying with, we 

are having different approaches for the design of blade from hub to shroud. 

And that is how we are doing our iterations. And finally, we are reaching at say some shape of our 

stage for rotor and stator. And that’s what we have defined as a sizing problem. Now, take a 

different consideration, suppose say we are already having engine. Now, for that engine, we need 

to estimate what is a performance. 

That means you can understand the geometrical parameters, that’s what are known to us, say flow 

angles or blade angles, they are known to us, maybe based on the experimentation or maybe based 

on actual engine data, we know temperature, we know pressure at different location, even our 

rotational speeds are also known to us. 

If those all things are known to us, we need to verify with say what will be my pressure ratio, what 

will be my mass flow rate to that engine or to that compressor; and that’s what we have defined as 

a rating problem. So, in line to that, let us try to move ahead, let us take the numerical that’s what 

will give idea how do we use what all we have learned up till now. 
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So, take a numerical, say…here it says figure shows meridional flow path of compressor stage. 

The rotor speed is 14,000 rpm and specific heat ratio is 1.4. The following conditions apply over 

the rotor inlet and outlet gaps. So, information available at rotor inlet gap is my total temperature 

is constant. My inlet absolute flow angle is 0. Density is 2.25 𝑘𝑔/𝑚3. And static temperature at 

the hub is 511 K. 

𝑇0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝛼 = 0 𝑑𝑒𝑔 

𝜌 = 2.25
𝑘𝑔

𝑚3
 

𝑇ℎ𝑢𝑏 = 511 𝐾 

Now, at the rotor exit, so you can understand this is what is the region where this information that’s 

what is given. At rotor exit, it says my T0 is constant, my relative blade angle 𝛽 that’s what is 0 

you can say what we have defined, 𝛽2 that’s what is equal to 0, density at the hub is 2.4 𝑘𝑔/𝑚3, 

hub temperature is 552 K and my axial velocity at the hub is 124 𝑚/𝑠. 

So, these are the data that’s what are given at a rotor entry gap and rotor exit gap. Using any simple 

means of integration say trapezoidal rule, and considering only the properties of hub, mean, and 

tip section for simplicity, calculate following variables: the mass flow rate through the compressor 

stage, and second, exit total relative pressure at the tip section. So, just look at this is what is our 



stage and this is what is information that’s what is given to us. So, let us try to solve this a 

numerical. 
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Say, this is what is all data that’s what is given to us, it says my hub radius is given it is 0.06 meter, 

my mean radius is 0.08 meter, and we are having our tip radius as 0.09 meter. Here in this case, at 

the outlet my hub radius is given 0.07 meter. So, in the gap we are having say total temperature as 

mentioned it is a constant, my alpha is 0, my density is given, temperature is given. 

𝑟ℎ1
= 0.06 𝑚, 

𝑟𝑚 = 0.08 𝑚, 

𝑟𝑡1
= 0.1 𝑚 

𝑟ℎ2
= 0.07 𝑚 

𝑟𝑡2
= 0.09 𝑚 

At the outlet, we are having our total temperature, that’s what is constant, my blade angle 𝛽 is 0, 

my density, temperature and axial velocity they are given to us. What we are asked for is to 

calculate the mass flow rate. 

𝑇0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑙𝑜𝑤 𝑎𝑛𝑔𝑙𝑒, 𝛽 = 0 

𝜌ℎ𝑢𝑏 = 2.4 𝑘𝑔/𝑚3 

𝑇ℎ𝑢𝑏 = 552 𝐾 

𝐶𝑎,ℎ𝑢𝑏 = 124 𝑚/𝑠 

 

 



Now, the thing is we must have first idea like we can calculate our mass flow rate using continuity 

equation, okay. When I say continuity equation, we must have say density, area, as well as say our 

axial velocity. 

So, if we consider this density, we say, that’s what is the static density. My area, you can say my 

radius, that’s what is given to me. So, that’s what will be helping me in calculating my area, and 

axial velocity. So, here, specifically axial velocity at the hub is given to us. That means we do not 

know whether our axial velocity is constant or varying. 

So, now, if this is what is your question, you can understand, we can use some formulation in order 

to calculate the variation of this axial velocity, as well as our other properties. So, let us see what 

will be our strategies. So, as we have discussed our mass flow rate through the compressor, that’s 

what we are looking for. We will be using our continuity equation. We can calculate our passage 

area. We need to calculate what will be my axial velocity, whether it is variable or constant, we do 

not know, so for that, we need to go with radial equilibrium equation, okay. 
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So, let us start with. Here, in this case, if you look at the exit of my rotor, my velocity triangle, 

that’s what is given to me. And suppose if I consider this is what is my rotor, we can plot our 

velocity triangle like this, okay. And at the exit, it says my 𝛽, that’s what is equal to 0. So, you can 

say this is what is my V2, this will be my Cw2, that’s what is equal to peripheral speed U, okay. 

And this is what is my absolute velocity. 



Now, you know, since by 𝛽2, that’s what is given 0 to me, I can say, my Cw2, that’s what is equal 

to my peripheral speed. So, here if you look at, this is what is giving us a hint, how do we start 

with the calculation of different velocity components. So, very first calculation, that’s what we can 

use by using what data is given to us.  

So, it says my Cw2, that’s what is equal to U, that’s what is equal to 𝜔𝑟. Now, here in this case, we 

can say my 𝜔 we can write down as 
2𝜋𝑁

60
. And based on that, if we will be calculating my radial 

speed, we can say our 𝜔, that’s what is angular speed, that’s what is coming as 1466.07 𝑟𝑎𝑑/𝑠, 

okay. 

𝐶𝑤2 = 𝑈 = 𝜔𝑟 

𝜔 =
2𝜋𝑁

60
=

2𝜋 × 14000

60
= 1466.07 𝑟𝑎𝑑/𝑠 
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Now, we are not having any information about how my axial velocity, that’s what is varying. So, 

in order to take care of that, we know we are having our say radial equilibrium equation. So, if I 

am writing this radial equilibrium equation, so we will be having our formulation, that’s what will 

be coming like this, okay.  

 



𝑈𝑠𝑖𝑛𝑔 𝑅𝑎𝑑𝑖𝑎𝑙 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 

                   
1

2

𝑑𝐶𝑎
2

𝑑𝑟
+

𝐶𝑤

𝑟

𝑑

𝑑𝑟
(𝑟𝐶𝑤) = 0  

Now, what we know in place of my Cw, I can write down that’s what is given by 𝜔𝑟, okay. So, let 

me replace this with 𝜔𝑟.  

                                                    𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝐶𝑤 = 𝜔𝑟 

1

2

𝑑𝐶𝑎
2

𝑑𝑟
+

𝜔𝑟

𝑟

𝑑

𝑑𝑟
(𝑟2𝜔) = 0 

So, if you are simplifying this equation, it says my axial velocity into dCa by dr, that’s what is 

equal to minus 2 omega square into r, okay. 

𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔, 𝑤𝑒 𝑤𝑖𝑙𝑙 𝑔𝑒𝑡, 

    𝐶𝑎

𝑑𝐶𝑎

𝑑𝑟
= −2𝜔2𝑟 
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Now, if this is what is our equation, we need to calculate our axial velocity. So, here, in this case, 

let us consider any arbitrary radius r. Since, we are having our information available at the hub. 

So, that is the reason I say, I will be putting my limit from say hub to any radius r, say this is what 



is Ca into dCa, that’s what is equal to minus 2 omega square, this limit I am putting that’s what is 

rh to r into rdr. 

∫ 𝐶𝑎𝑑𝐶𝑎 = −2𝜔2 ∫ 𝑟𝑑𝑟
𝑟

𝑟ℎ

𝐶𝑎𝑟

𝐶𝑎ℎ

 

If you are doing the integration part, and if you are putting our limits, it says my axial velocity at 

any radius, that’s what is equal to my axial velocity at hub plus this formulation.  

𝐶𝑎𝑟
2 − 𝐶𝑎ℎ

2 = −2𝜔2𝑟2 + 2𝜔2𝑟ℎ
2 

𝐶𝑎𝑟
2 = 𝐶𝑎ℎ

2 + 2𝜔2𝑟ℎ
2 − 2𝜔2 𝑟2 

Now, the data that’s what is available to us, what all we know, we know our 𝜔, that’s what we 

have calculated it is 1466.07 𝑟𝑎𝑑/𝑠. We also know our hub radius at the exit, that’s what is 0.07 

meter, we know our axial velocity at the hub is 124 𝑚/𝑠. 

So, if I will be putting in this equation, it says my axial velocity at any radial location, that’s what 

will be given by this formula. 

𝐶𝑎𝑟
2 = 1242 + (2 × 1466.072 × 0.072) − 2 × 1466.072𝑟2 

                                   𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑥𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑡 𝑎𝑛𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 

𝐶𝑎𝑟 = √36437.7 − 4298312𝑟2 

So, now, you can understand what all will be the use of our radial equilibrium equation, okay. So, 

do not forget the formulation of radial equilibrium equation and its application. 
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So, here if we go with, say this is what is my variation of axial velocity, that’s what we are writing 

with, okay. Now, we are having different radiuses which are known to me; so, if we consider at 

hub, my radius is 0.07 meter, at midsection my radius is 0.08 meter, and at my tip, my radius is 

0.09 meter. So, if we are putting that in this formula, it says my axial velocity at the midsection is 

94.49 𝑚/𝑠, my axial velocity at the tip that’s what is 40.27 𝑚/𝑠. 

𝑇ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑡 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑡𝑖𝑝 𝑐𝑎𝑛 𝑏𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠, 

𝐶𝑎𝑚 = √36437.7 − 4298312 × 0.082 = 94.49 𝑚/𝑠 

𝐶𝑎𝑡 = √36437.7 − 4298312 × 0.092 = 40.27 𝑚/𝑠 

And, if you look at carefully, just remember the things what it is saying, if you look at the numbers 

at the hub, we are having maximum axial velocity and at the tip we are getting minimum axial 

velocity. So, it says, this is what is, you know, it is giving me some different kind of design feeling. 

You can understand, this is what it says like my design configuration for this blade, that’s what is 

of different kind. 

And if you recall, we are having axial velocity, that’s what will be varying with different 

configurations, okay. So, this design may be of such kind, okay. So, this is how we can do our 

calculation for axial velocity at midsection, our axial velocity at the tip section, okay. Now, as we 



have discussed, we are looking for mass flow rate to be calculated. Now, what we know? Mass 

flow rate that’s what we can calculate by using our continuity equation. 

And as we have discussed, we can write down that’s what is 

𝑚 = 𝜌𝐴𝐶𝑎 = 2𝜋𝜌 ∫ 𝐶𝑎𝑟𝑟𝑑𝑟
𝑟𝑡

𝑟ℎ

 

Now, here in this case, we are having variation of our axial velocity, okay. So, what is the meaning 

of that? We need to put our axial velocity variation in terms of radial variation or radius variation. 

So, we can write down density into area we are writing as 2 pi r dr, okay, that’s what we are 

integrating from hub to tip, okay. 

𝑚 = 𝜌𝐴𝐶𝑎 = 2𝜋𝜌 ∫ 𝐶𝑎𝑟𝑟𝑑𝑟
𝑟𝑡

𝑟ℎ

 

And we know our axial velocity that is also varying with the radius. So, be careful, straightway, 

do not try to put this equation as say 

𝜋

4
(𝑑𝑡𝑖𝑝

2 − 𝑑ℎ𝑢𝑏
2 ) 

Be careful, because here we are not having any information in sense of how my axial velocity 

that’s what is varying. And once we have calculated, we realize, our axial velocity, that’s what is 

varying with the radius. That means, I need to divide all these segments into small - small radius. 
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So, if we consider this is what is a case, you can write down my mass flow through the compressor 

annulus, that’s what will be given by this formula.  

𝑚 = 𝜌𝐴𝐶𝑎 = 2𝜋𝜌 ∫ 𝐶𝑎𝑟𝑟𝑑𝑟
𝑟𝑡

𝑟ℎ

 

Now, in order to solve such kind of equation, we need to go with some numerical techniques. And 

as the hint that’s what is given, it says you need to go with using numerical technique, that’s what 

is called trapezoidal rule, okay. 

So, if you are writing the trapezoidal rule for that, so, integral part of this 𝐶𝑎𝑟𝑑𝑟, that’s what we 

can write down in the form of  
Δ𝑟

2
× [𝐶𝑎ℎ𝑟ℎ + 2𝐶𝑎𝑚𝑟𝑚 + 𝐶𝑎𝑡𝑟𝑡].  

So, what all you are learning during your graduate studies or maybe for postgraduate studies, 

remember the concepts what we are using for. 

𝑚 = 2𝜋𝜌 ×
Δ𝑟

2
× [𝐶𝑎ℎ𝑟ℎ + 2𝐶𝑎𝑚𝑟𝑚 + 𝐶𝑎𝑡𝑟𝑡] 

You can understand when we are having the variation of two parameters axial velocity and radius 

and that too if you are looking for the calculation of these absolute numbers we need to go with 

this numerical technique, okay. So, if you are considering that as a case, it says I need to select my 



Δ𝑟, suppose if I consider what numbers we are having, it says 0.07, 0.08 and 0.09. So, let me 

consider Δ𝑟 to be 0.01. So, I am putting this Δ𝑟 = 0.01, okay. 

Now, my axial velocity at the hub is known to me, my radius at the hub is known to me, axial 

velocity at the midsection that’s what is known to me, radius at the midsection that is also known 

to me, we have our axial velocity at the tip and say radius at the tip, those things are known to us. 

So, if I will be putting all these numbers, that’s what is giving me, my mass flow rate as 2.06 𝑘𝑔/𝑠, 

okay. 

𝑚 = 2𝜋 × 2.4 ×
0.01

2
× [124 × 0.07 + 2 × 94.49 × 0.08 + 40.27 × 0.09] 

                   𝑚 = 2.06 𝑘𝑔/𝑠 

So, this is what you can say, based on what data that’s what is available to us, just try to recall 

what all data that’s what is available to me. Say, at the exit we are having our 𝛽, that’s what is 

given, our axial velocity at some location that’s what is given and my density at that location it is 

given. With these three data, we are able to estimate, you can say, this is what is approximate 

estimation, you can say roughly, that’s what is say 2.06 𝑘𝑔/𝑠, that’s what is a mass flow rate 

through this passage, okay. 
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Now, let us move with the second configuration, what they are asking for second configuration? 

We are looking for our total relative pressure at the exit of my rotor, okay. Now, you can 

understand if I am looking for relative total pressure, that’s what is required different parameters 

known to me. What all parameters are required? We are looking for our static pressure because we 

know our static pressure and total pressure they are interrelated. 

Now, the question is how they are interrelated, they are interrelated with my critical Mach number 

or critical velocity ratio, okay. Now, we know we need to calculate what will be my static pressure 

at the tip. So, here in this case, we are not known what will be the exit static pressure at the hub, 

we do not know what is our exit static pressure at the tip. So, very first thing is we need to calculate 

what will be our static pressure, okay. 

We need to calculate our critical velocity ratio that means we need to have a calculation of the 

various velocity components at the exit, okay. So, let us see what all strategies we will be using. It 

says my exit total pressure at the tip that’s what we can calculate based on whether we are having 

the information about the static pressure at the tip, do we know our critical velocity, these two 

things they are not known to me. 

Now, the question is this critical velocity you can calculate based on calculation of your 

temperature and different velocity components. So, that’s what can be done, okay. Means we need 

to play with this, we are looking for these parameters to be calculated. Next thing is do we know 

the static pressure at some other location in the exit? At this moment, it says no, but if you look at, 

we are given with two parameters, that’s what is density and temperature. 

So, you can say, using our perfect gas equation, we can calculate what will be our static pressure 

at the hub. Yeah, so once we are having that static pressure at the hub, we need to calculate or we 

can calculate the other static pressure, how! The question will be coming say how to calculate that 

part! So, we have a fundamental radial equilibrium equation. So, based on that, we can calculate 

what will be my static pressure at the tip. 

And based on all my velocity components and temperature calculation, we can calculate what is 

our critical velocity and that is how we need to proceed further, okay. So, whenever this 

information that’s what is given to you, just try to look at what all information are known to me 

and how do I correlate these things. Many times, the formulas that’s what is known to everyone 



but the thing is how to apply and where to apply that’s what is always a question mark. So, make 

it this kind of same chart, that’s what will give you hint how do we solve the numerical, this will 

make our method for solution to be very easy, okay. 
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So, let us see, very first we are targeting our critical velocity. So, this is what is my velocity 

triangle, I can say, that’s what is at my hub, okay. So, this is what I can say this is what it is at the 

hub, this is what is at my say inlet and this is what is at my exit. Now, from our velocity triangle, 

we are looking for critical velocity calculation. That means, we are looking for relative velocity 

component. 

Now, in order to calculate our say relative velocity component, we must know other velocity 

components. So, let us start with this, it says if you are considering this as my triangle, we can 

write down my absolute velocity that’s what is nothing but it is my axial velocity. And this is what 

is my whirl velocity component. 

Now, be careful! This whirl component what we are calculating, that’s what is at the hub. So, 

specifically I am writing here is hub, so it says at hub we know our axial velocity that’s what is 

124 𝑚/𝑠, we know what is our 𝜔 and this is what is my ‘r’. So, at hub we know our radius as 0.07, 

okay. So, that’s what will be giving me my absolute velocity as 160.96 𝑚/𝑠. 



𝐶2ℎ = √𝐶2𝑎ℎ
2 + 𝐶2𝑤ℎ

2  

        = √1242 + (1466.07 × 0.07)2 

        = 160.96 𝑚/𝑠 
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Now, what we are looking for, we need to have temperature to be known in order to calculate our 

critical velocity ratio, okay. So, at hub, we can straightway write down say, T02 at the hub, that’s 

what is given by my static pressure plus C2 square by 2Cp, okay. 

𝑇02𝑟ℎ = 𝑇2ℎ +
𝐶2ℎ

2

2𝐶𝑝
 

                                   = 552 +
160.962

2 × 1.005 × 103
 

𝐻𝑒𝑛𝑐𝑒, 𝑇02𝑟ℎ = 564.9 𝐾 

So, at hub my static pressure it is known to me. We have calculated our absolute velocity and this 

is what is known to me. So, that’s what will be giving me what is my total temperature at the hub, 

it says this is what is 564.9 K, okay. 

Now, what exactly we are looking for, that’s what is my relative critical Mach number, and as the 

reason we must have relative total temperature; so, that’s what we can write down here. This is 



what is given by this is my static temperature at the tip and this is nothing but this is what is my 

relative velocity at the exit of my rotor by 2Cp. 

𝑇02𝑟_𝑡𝑖𝑝 = 𝑇2𝑡 +
𝑉2𝑟𝑒𝑙

2

2𝐶𝑝
 

You can understand my static temperature at the tip that’s what can be rewritten as 

𝑇02𝑟_𝑡𝑖𝑝 = 𝑇02𝑡 −
𝐶2𝑡

2

2𝐶𝑝
+

𝑉2𝑟𝑒𝑙
2

2𝐶𝑝
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Now, at tip region, we have calculated our total temperature, what we know, we have our axial 

velocity, that’s what is known to me. So, V2 at the tip is known to me, okay. So, I can calculate 

what will be my C2t, that is nothing but my absolute velocity at the tip. So, what is given to us say, 

you know, our relative angle 𝛽, that’s what is equal to 0 at the exit, okay. If that’s what is your 

case, at tip also, I can help this right-angle triangle. 

So, we can write down our C2 at the tip, that’s what is given by 

𝑁𝑜𝑤, 𝑉2𝑡 = 𝐶𝑎2𝑡 = 40.24 𝑚/𝑠 (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒) 

𝐴𝑙𝑠𝑜, 𝐶2𝑡 = √𝑉2𝑡
2 + 𝜔𝑟𝑡

2 



                                                     = √40.242 + (1466.07 × 0.09)2 

𝐶2𝑡 = 137.94 𝑚/𝑠 

Remember here, this is what is my radius at the tip. So, that’s what we are putting here and this is 

giving me my C2, it is 137.94 𝑚/𝑠, okay. Now, if you are putting these numbers, that’s what is 

giving me my total relative temperature at the tip as 556.2 K, okay. 

𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝑡ℎ𝑒𝑠𝑒 𝑣𝑎𝑙𝑢𝑒𝑠, 𝑤𝑒 𝑔𝑒𝑡 

𝑇02𝑟𝑡𝑖𝑝
= 564.9 −

137.942

2 × 1.005 × 103
+

40.242

2 × 1.005 × 103
 

𝑇02𝑟_𝑡𝑖𝑝 = 556.2 𝐾 

So, be careful at what location which parameter you are calculating. So, make a habit to write 

down at tip region, what numbers you are putting; at hub, what numbers you are putting, otherwise 

it will get hotchpotch and maybe it will be difficult to understand. Make a habit of making these 

velocity triangles; so, that it will make life easy, okay. 
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Now, this is what is known to us. So, we can calculate what will be our relative velocity or relative 

critical tip velocity, that’s what we know that is given by 2 𝛾 RT02 at the tip, that’s what is a relative 

temperature by 𝛾 + 1, that’s what we are calculating as say 431.26 𝑚/𝑠, okay. 

𝑉2𝑐𝑟𝑡_𝑡𝑖𝑝 = √
2𝛾𝑅𝑇02𝑟𝑡𝑖𝑝

𝛾 + 1
 

                                        = √
2 × 1.4 × 287 × 556.2

1.4 + 1
 

𝑉2𝑐𝑟𝑡_𝑡𝑖𝑝 = 431.26 𝑚/𝑠 

Now, we know what is our say critical Mach number, this critical Mach number we know it is 

nothing but this is what is say my C or we can say this is what is my V2, but since 𝛽 is given 0, we 

are writing this as say Ca2 divided by V2crt and this is what is giving my relative Mach number - 

relative critical Mach number at the tip as 0.094. So, now you can understand in order to do our 

calculation for static pressure, we are known with say this Mach number. 

𝑀2𝑡𝑐𝑟
=

𝐶𝑎2𝑡

𝑉2𝑐𝑟𝑡𝑡𝑖𝑝

 

=
40.24

431.26
 

𝑀2𝑡_𝑐𝑟 = 0.094 
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So, let us move with what all we are looking for, it says, we are looking for exit relative total 

pressure at the tip. And for that we are looking for say static temperature and critical velocity. And 

in order to do the calculation of this critical velocity, all these steps what we have followed. Now, 

we are looking for say static pressure, that’s what is our target. 

(Refer Slide Time: 28:38) 

 



So, in order to do that calculation, let us see, how do we proceed with. What we know? My static 

pressure, that’s what is correlated with my whirl velocity component by our radial equilibrium 

equation. So, we say 
𝑑𝑝

𝑑𝑟
, that’s what is given by 

𝑅𝑎𝑑𝑖𝑎𝑙 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 

𝑑𝑝

𝑑𝑟
=

𝜌𝐶𝑤
2

𝑟
 

Now, the Cw, that’s what we are writing as say 𝜔𝑟.  

𝑆𝑖𝑛𝑐𝑒, 𝐶𝑤 = 𝜔𝑟 (𝑎𝑠 𝑔𝑖𝑣𝑒𝑛) 

So, if you are putting this in the formulation; so, 
𝑑𝑝

𝑑𝑟
, that’s what will be coming as say 

𝑑𝑝

𝑑𝑟
= 𝜌𝜔2𝑟 

Now, in order to calculate my pressure, we can integrate this equation. So, on integration, that’s 

what is say my pressure is given by 

𝑝2 =
1

2
𝜔2𝑟2 + 𝐶 

This is what is say integral constant. And as we have discussed, our static density and static 

temperature at the hub, that’s what is known to us. So, by using our perfect gas equation, say  

𝑝ℎ = 𝜌ℎ𝑅𝑇ℎ 

that’s what will give me what is my static pressure at the hub.  

𝑝ℎ = 2.4 × 287 × 552 = 380217.6 𝑃𝑎 

So, this is what will be my static pressure at the hub, okay. Be careful, everything we are writing 

at the hub, okay. Now, this is what is known to me. 
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What we know? We are having our say radial equilibrium equation and from there, we have 

calculated our static pressure, that’s what is given 

𝑝2 =
1

2
𝜔2𝑟2 + 𝐶 

Since, our static pressure at the hub is known to us, my radius is known to us, my say angular 

speed is known to us, we can calculate what will be our constant C. 

So, if we are putting this number, this constant, that’s what is coming as say 367580.56. 

𝐶 = 𝑝ℎ −
1

2
𝜔2𝑟ℎ

2 

                                              = 380217.6 −
1

2
× 1466.072 × 0.072 

𝐶 = 367580.56 𝑁/𝑚2 

Be careful, do not forget to write down the unit of this constant. Now, since this is what is a 

constant known to us, so, we can write down now, our static pressure at the outlet, that’s what can 

be written as 

𝑝2 =
1

2
𝜔2𝑟2 + 367580.56 



Now, this is what is giving us a hint, if I am looking for my static pressure calculation at the tip, I 

know what is my angular speed, I know what is my radius at the tip. So, we can write down here 

it is 1466.07 square and my tip radius is 0.09 square, okay. 

𝑇ℎ𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑡𝑖𝑝 𝑖𝑠 𝑡ℎ𝑢𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦, 

𝑝2𝑡 =
1

2
× 1466.072 × 0.092 + 367580.56 

𝑝2𝑡 = 388469.79 𝑃𝑎 

If this is what is known, we can calculate our static pressure, that’s what is say 388.46 kPa, okay. 

Now, this is what is giving me our static temperature calculation at the tip, but what exactly we 

are asked for, we are looking for say our relative total temperature at the tip. 
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So, let us go with that part. If you are writing, this is what is a formulation what we have already 

derived in our last lecture. So, straightaway we will put that equation, it says this is what is my P2, 

that’s what we have calculated divided by 1 plus gamma minus 1 divided by gamma plus 1, this is 

nothing but my say critical Mach number square to the power gamma over gamma minus 1. These 

all numbers they are known to us. 



So, we can calculate what will be my total pressure at the tip, okay, and that’s what is coming 

390.44 kPa.  

𝑝02𝑟𝑒𝑙_𝑡𝑖𝑝 =
𝑝2𝑡

(1 +
𝛾 − 1
𝛾 + 1 (

𝐶𝑎2𝑡

𝑉2𝑐𝑟𝑡𝑡𝑖𝑝

)

2

)

𝛾
𝛾−1

 

=
388469.79

(1 +
1.4 − 1
1.4 + 1 × 0.0932)

1.4
1.4−1

 

𝑝02𝑟𝑒𝑙_𝑡𝑖𝑝 = 390.44 𝑘𝑃𝑎 

So, this is what is, you know, one way as I discussed, we are looking for say calculating different 

parameters for the known geometry, it may be possible that you may be given with some 

information at particular location and you need to check with what all need to be the parameters 

at that particular location, okay. 

So, this is what is we are moving towards, you know, data analysis kind of thing, okay. What 

exactly say for flying engines, these days, engine companies they are collecting all their data, this 

data they are in terms of maybe pressure, maybe temperature, say Mach number, all those 

parameters they are acquiring. And based on that they are assessing the performance of that engine. 

And that’s what is giving the health of that engine. So, you know, health monitoring, that’s what 

people they are doing by using this data. So, by using that data, maybe you can able to calculate 

what all need to be my total pressure ratio or my overall pressure ratio, what need to be my 

temperature; if that temperature is shoot up, that’s what is indicating something is wrong, okay. 

So, that is how all we need to learn with what all we are understanding from our basic learning 

from fundamental courses and this is what is coming as an applied part. So, thank you very much 

for your attention! We will be discussing one more numerical in the next session. Thank you. 


