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Hello, and welcome to lecture-21st. In last few lectures, we were discussing about different 

design approaches for axial flow compressors and fans. So, we were discussing about design 

methods name as say… free vortex design, forced vortex design, constant reaction design, 

exponential design, constant 𝛼2 and work loading or our fundamental method.  

Now, this is what is a compilation of all design methods what we have discussed in past few 

lectures. That’s what is in sense of the variation of work with the radius, whirl distribution, 

axial velocity variation with the radius, variation of degree of reaction. Whether this method is 

opting for or is it satisfying a radial equilibrium and we will be putting some remarks that’s 

what is related to the final blades what we will be getting.  

So, if you look at, very first method, what we have discussed it is free vortex method. And as 

we have discussed, during 50s and 60s, people, they were using this method for the 

development of gas turbine engines application to Aero engines, okay. Now, in that, what we 

are looking for is by work variation, that’s what will remains constant. I will be having my 

whirl distribution as say 𝑟𝐶𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 



And, if we look at, this is what it says axial velocity also we are assuming to be constant. And, 

we have derived with it says my degree of reaction, that’s what is varying all the way from hub 

to tip. And, this is what is satisfying our radial equilibrium equation. And if you look at, this 

method, that’s what is giving highly twisted blades.  

And we have realized, there may be chances for my degree of reaction to go 0 or maybe 

negative value when we are looking for free-vortex design concept, okay. In order to overcome 

what limitations we are having with the free vortex design, we have opt for different 

approaches; one of them, that’s what is a forced vortex design approach. We can say my work 

variation, that’s what is varying with the function of 𝑟2.  

Here, whirl distribution, we are assuming 
𝐶𝑤

𝑟
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. And, if we look at our axial velocity, 

we are calculating based on radial equilibrium, and it says my degree of reaction, that’s what 

is varying from hub to tip. And yes, this is what is satisfying our radial equilibrium equation.  

So, if you recall from our radial equilibrium requirement, we say, we need to have constant 

work input all the way from hub to shroud, we need to have our axial velocity to be constant, 

and 𝐶𝑤 ∙ 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. If we are satisfying these three requirements, then we can say our 

radial equilibrium, it is satisfied. Then we have discussed, if you are able to have two 

parameters, that’s what is known to us, we can calculate our third parameter. So, that’s what 

we have done in our forced vortex design. 

Then we have started discussing about the constant reaction design. So, if we look at, it says 

my work variation along the radius, that’s what is constant; my whirl distribution, that’s what 

we have arbitrarily chosen. Whirl velocity component, it says my Cw1 and Cw2, that’s what is 

varying in the form of 𝑎𝑟 ±
𝑏

𝑟
. So, at the entry we are assuming my whirl distribution, at the 

exit we are assuming different whirl distribution; my axial velocity, that’s what we are 

calculating based on radial equilibrium equation.  

And as we have decided with, say constant reaction; so, it says my variation of degree of 

reaction, that’s what is constant. And the limitation with this method, it is not satisfying radial 

equilibrium, okay. But, it says this is what is more logical design and it may be used for design 

of special kind of compressors, okay.   



Then we are having our exponential design method; if you are looking at my work variation, 

that’s what is constant and my whirl velocity distribution, we can say that’s what is based on 

my selection of arbitrary whirl distribution. We can calculate our axial velocity based on radial 

equilibrium equation and it says my degree of reaction, that’s what is varying along my span 

or with radius from hub to shroud. And, we can say, this is what is satisfying my radial 

equilibrium equation. This, also people used to say as a more logical design.  

So, many fans, many compressors in actual engines; we are finding, they are having of this 

kind of design configuration. We have discussed about the variation of my exponent from 

ranging of say maybe 0.8 to 2, that’s what is of special category and there we are using this 

kind of design concepts. These days people started talking about constant 𝛼2 design, in which 

at the exit of my rotor, 𝛼2 we are assuming to be constant, okay.  

So, there are special requirements downstream of my rotor, we are having stator and for more 

challenging designs, people they are opting for constant 𝛼2 approach. It says, my work done 

supposed to be constant; we can say, my whirl distribution, you can say, my Cw2, that’s what 

is constant. We are assuming our whirl component at the exit of rotor to be constant.  

And at the entry, we can assume that to be say 𝑎 − 𝑏/𝑟. We are having this axial velocity, we 

can say, it is supposed to be constant; we can say my degree of reaction also is around constant, 

you can say, about constant, approximately constant. Here, we are ignoring our radial 

equilibrium. The beauty of this design is we will be having less twisted blades, okay! 

So, recent compressors what we are looking for, say… for LP compressor for HP compressor, 

even for high bypass ratio fans or for low bypass ratio fans, people, they are looking for the 

special kind of requirements. And, these designs, that’s what will be catering those. Then we 

were discussing about say work loading or the fundamental method, that’s what it says my 

work done or work, that’s what is varying along my radius; we are having variation of my Cw 

component.  

Because at all stations, we are not assuming our Cw at entry and Cw at the exit. Basically, that’s 

what we are calculating based on our fundamental understanding of aerodynamic work and 

thermodynamic work. We can say, our axial velocity we are assuming to be constant, we will 

be having degree of reaction, that’s what is varying all the way from hub to tip. And, in this 

case also, our radial equilibrium we are ignoring. Now, the case is what blades we are getting, 

that’s what is having less twisted blade.  



So, it is all the choice of designer to meet special requirements and based on that he or she will 

be doing the design or group of people, they are doing their design and finally based on their 

expectation, if the design is meeting with, they will be going for finalizing that design approach. 

So, there is no unique method in sense; you are having multiple choice here when you are doing 

your design, okay. So, with this background, let us try to solve a numerical, that’s what will be 

giving you idea how do we approach with say different design concepts.  
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So, let us take a numerical. it says a low speed compressor need to be designed to have overall 

pressure rise of 1000 pascal with design speed of 2200 rpm. The hub and tip radius are 0.1 m 

and 0.2 m respectively. The axial velocity is 30 𝑚/𝑠, the estimated stage isentropic efficiency 

and work done factor, they are 95% and 0.98 respectively. The ambient conditions are 𝑝01 =

101325 𝑃𝑎 and temperature as 288 K. Calculate the variation of air angles and degree of 

reaction for free vortex and constant reaction whirl distribution.  

So, this is what is a numerical. We can say what all data that’s what is given. We know what 

is my tip radius, it is 0.2 m, hub radius is 0.1 m. You can say, you can calculate your mid radius,  

𝐺𝑖𝑣𝑒𝑛 𝑑𝑎𝑡𝑎, 

𝑟𝑡 = 0.2 𝑚 

𝑟ℎ = 0.1 𝑚 

𝑟𝑚 =
𝑟𝑡 + 𝑟ℎ

2
= 0.15 𝑚 



that’s what is 0.15 m.  

We have our rotational speed as say 2200 rpm, you can say, this speed is say low speed 

compressor, we will be having our efficiency to be 95% and you can see work done factor it is 

given 98%. 

𝑁 = 2200 𝑟𝑝𝑚 

𝜔 =
2𝜋𝑁

60
= 230.38

𝑟𝑎𝑑

𝑠
 

𝜂 = 95% 

𝜆 = 0.98 

So, you can say, this is what may be, the first stage. We are having our entry pressure and entry 

temperature and we are expecting our total pressure rise of 1000 Pa and axial velocity also is 

known to us.  

𝑃01 = 101325 𝑃𝑎 

𝑇01 = 288 𝐾 

Δ𝑃0 = 1000 𝑃𝑎 

𝐶𝑎 = 30 𝑚/𝑠 

Now, what all we are looking for is, we are looking for variation of my air angles and degree 

of reaction.  

So, you can understand if we are looking for air angles, we must know what all are the velocities 

at the entry of my rotor, what are the velocities at the exit of my rotor. When I say velocities, 

we can say what are my absolute velocities, my relative velocities. Based on that we will be 

calculating our Cw, that is nothing but my whirl component, because that’s what is important 

in order to calculate your degree of reaction, okay. And, this Cw, that’s what you can calculate 

based on what all work done is given to you, okay.  

So, in order to meet these requirements, let us move from bottom to top approach. Say, initially 

we will be implementing our work done equation for the calculation of parameters. 
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So here, what we know? We know what is my total pressure rise required, we know what is 

our efficiency and based on that we can calculate what will be my temperature ratio. Once we 

will be calculating our temperature ratio, we are able to calculate our thermodynamic work. 

So, let us move step by step. 

Say very first point it says my stage pressure rise, you can say P02 by P01. You can say, what 

pressure rise we are expecting is say 1000 Pa, that’s what will be giving me my pressure ratio 

of 1.00986 pressure ratio.  

𝑇ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜, 

𝜋𝑐 =
𝑃02

𝑃01
=

𝑃01 + Δ𝑃0

𝑃01
=

101325 + 1000

101325
= 1.00986 

Now, based on this pressure ratio, we can calculate what will be our temperature ratio. So here, 

this temperature ratio we are correlating in sense of my pressure ratio and efficiency. 

𝑇ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜, 

𝜏𝑐 = 1 +
𝜋𝑐

𝛾−1
𝛾

 
− 1

𝜂
 

So, these two are known to me, if I will be putting, that’s what we will be giving me my 

temperature ratio as say 1.00298.  

 



𝜏𝑐 = 1 +
1.00986

0.4
1.4 − 1

0.95
 

∴ 𝜏𝑐 = 1.00298 

Now, once this temperature ratio is known to us, we can calculate what will be my outlet 

temperature. So, we can say we are able to calculate what will be my Δ𝑇0. So here, if you look 

at, since this is what is low speed application, we are expecting our pressure rise in the range 

of 1000 Pa, that is why my pressure ratio is lower. And that is the reason why my T02 is also 

coming to be lower, okay. 

𝑇ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑒𝑥𝑖𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 

𝑇02 = 𝜏𝑐𝑇01 = 1.00298 × 288 = 288.85 𝐾 
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Now, once we are calculating this T02, we are able to calculate what will be my Δ𝑇0, okay. 

Now, let us try to calculate what all will be my peripheral speed at different stations. So, in 

order to calculate, we can say my peripheral speed at the hub. It is my, you know, angular speed 

into hub radius, my angular speed into say mid radius, my angular speed into tip radius. So, 

this radius at hub, tip and mid-section, that’s what is given to us. So, if you will be putting this, 

it will be giving me my peripheral speed at different stations. 

𝑇ℎ𝑒 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑎𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

𝑈ℎ = 𝜔𝑟ℎ = 230.38 × 0.1 = 23.04 𝑚/𝑠 



𝑈𝑚 = 𝜔𝑟𝑚 = 230.38 × 0.15 = 34.55 𝑚/𝑠 

𝑈𝑡 = 𝜔𝑟𝑡 = 230.38 × 0.2 = 46.08 𝑚/𝑠 

Just understand, we are interested in calculation of what is happening at different stations, 

mainly at three stations, mid-section, hub-section and tip-section.  

Now, here in this case, if you look at, we can say, we can correlate our aerodynamic work and 

thermodynamic work. And, based on that, if we are putting this equation, it says, my change in 

whirl component, that’s what is a function of 𝐶𝑝Δ𝑇0, my work done factor and my peripheral 

speed at the mid-station. So, we will be doing our calculation what is happening at the mid-

section first. So, it says my delta Cw Δ𝐶𝑤, that’s what is coming as say 25.33 meter per second 

𝑚/𝑠. 

𝐴𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑤𝑜𝑟𝑘 = 𝑇ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑤𝑜𝑟𝑘 

𝐶𝑝Δ𝑇0 = 𝜆𝑈𝑚Δ𝐶𝑤 

∴ Δ𝐶𝑤𝑚 =
𝐶𝑝Δ𝑇0

𝜆𝑈𝑚
=

1.005 × 103 × 0.85

0.98 × 34.55
 

∴ Δ𝐶𝑤𝑚 = 25.33 𝑚/𝑠  
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Now, what we are asked for? We are asked for implementing two different design approaches; 

first, it is free vortex design in which we can say my 𝑛 = −1, okay. So, let us try to approach 



with say first design methodology, that’s what is say free vortex method. So, here, if you look 

at, my Δ𝐶𝑤, that is nothing but a change in my tangential velocity component, we can write 

down here it is  

Δ𝐶𝑤𝑚 = 𝐶𝑤2𝑚 − 𝐶𝑤1𝑚 

Since, we are considering our entry to be axial one, that is the reason why my Cw1, that is 

coming 0. So, if you are putting these numbers, it says we are able to calculate the whirl 

component at the exit and at the mid-station, okay. 

𝐶𝑤1𝑚 = 0(∵ 𝐴𝑥𝑖𝑎𝑙 𝑒𝑛𝑡𝑟𝑦) 

∴ 𝐶𝑤2𝑚 = 25.33 𝑚/𝑠 

Now, if you are considering this is what will be my velocity triangle, do not forget to plot 

velocity triangle in order to understand, and in order to calculate various angles and various 

velocity components. 

So, here if you look at, this is what is representing my inlet velocity triangle, this is what is 

representing my outlet velocity triangle, for the rotor, okay. So, from my velocity triangle, I 

can say my tan 𝛽1, that’s what we can say, it is 𝑈𝑚/𝐶𝑎 . So, based on that this Um we have 

calculated. Ca, that’s what is given, it is 30 𝑚/𝑠. So, based on that we can calculate what will 

be my entry air angle, 𝛽1. In line to that, based on my exit velocity triangle, we can calculate 

what will be my 𝛽2 

𝐹𝑟𝑜𝑚 𝑖𝑛𝑙𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 

𝛽1𝑚 = tan−1 (
𝑈𝑚

𝐶𝑎
) 

= tan−1 (
34.55

30
) 

∴ 𝛽1𝑚 = 49.03° 

So, here this tan 𝛽2 , we can write down. That is nothing but 
𝑈𝑚−𝐶𝑤2𝑚

𝐶𝑎
 . This Um is known to 

us, Cw2 is known to us, my axial velocity, that’s what is known to us. We can calculate, what 

is my 𝛽2 at a mid-section, okay. So, you can understand, we have calculated what is our whirl 

component and what will be the change in these angles.  



𝐹𝑟𝑜𝑚 𝑒𝑥𝑖𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 

𝛽2𝑚 = tan−1 (
𝑈𝑚 − 𝐶𝑤2𝑚

𝐶𝑎
) 

= tan−1 (
34.55 − 25.33

30
) 

∴ 𝛽2𝑚 = 17.08° 
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Now, at the exit; similarly, we can calculate what is our absolute flow angle. So, if you are 

putting this, say it says tan 𝛼2, that’s what is given by 𝐶𝑤2/𝐶𝑎, Ca is nothing but this is what is 

my axial velocity component. So, it says I will be having my 𝛼2, that is 40.17°. Now, what all 

we learn, for free vortex design, we are considering my 𝐶𝑤 ∙ 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝐹𝑟𝑜𝑚 𝐸𝑥𝑖𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 

𝛼2 = tan−1 (
𝐶𝑤2𝑚

𝐶𝑎
) 

= tan−1 (
25.33

30
) 

∴ 𝛼2 = 40.17°  

So, here in this case, since my Cw at the mid station is known to me and my radius is known to 

me. So, I will be writing say we can write down, 



𝐶𝑤2𝑡 ×  𝑟𝑡 = 𝐶𝑤2𝑚 × 𝑟𝑚 

So, you can understand, we are basically calculating the constant. And, what we have assumed? 

Throughout my span, my 𝐶𝑤 ∙ 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. So, that’s what will be giving us the idea to 

calculate what is happening in sense of change of Cw2 at mid station, at tip and at the hub. So, 

let us calculate what is happening at the tip. It says my Cw2 at the tip, it is 19 𝑚/𝑠, okay. 

∴ 𝐶𝑤2𝑡 =
𝑟𝑚

𝑟𝑡
× 𝐶𝑤2𝑚 =

0.15

0.2
× 25.33 = 18.99 ≈ 19 𝑚/𝑠 
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Now, once we are able to calculate our whirl component at the tip, we can calculate what all 

are the flow angles. So, what we know? my 𝛼1, that’s what is 0 because we are considering 

axial entry. So, based on my velocity triangle, we can calculate my 𝑡𝑎𝑛 𝛽1, that is 𝑡𝑎𝑛 𝛽1 =

𝑈/𝐶𝑎, do not forget this U is at tip, okay, and my axial velocity we are as assuming to be 

constant. So, Utip what we have calculated earlier, it is 46.08 and Ca it is known to us, that’s 

what is 30 𝑚/𝑠. 

𝐹𝑟𝑜𝑚 𝑖𝑛𝑙𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 

𝛼1𝑡 = 0 

𝛽1𝑡 = tan−1 (
𝑈𝑡

𝐶𝑎
) 



= 𝑡𝑎𝑛−1 (
46.08

30
) 

∴ 𝛽1𝑡 = 57° 

So, based on that, we can calculate our 𝛽1𝑡 it is 57°. Same way, we can calculate what is 

happening with my 𝛽2𝑡. So, if we are looking at, it says my from velocity triangle, we can write 

down my 

tan 𝛽2𝑡 =
𝑈𝑡𝑖𝑝 − 𝐶𝑤2𝑡

𝐶𝑎
 

∴ 𝛽2𝑡 = tan−1 (
𝑈𝑡𝑖𝑝 − 𝐶𝑤2𝑡

𝐶𝑎
) 

= tan−1 (
46.08 − 19

30
) 

∴ 𝛽2𝑡 = 42.07° 

So, that’s what is giving my 𝛽2𝑡 as 42.07°, okay. Now, same way we can calculate what is 

happening with my absolute triangle. So, that’s what is nothing but tan inverse Cw2 by Ca and 

that’s what is giving alpha to as 32.35°. 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑥𝑖𝑡 𝑎𝑛𝑔𝑙𝑒 

𝛼2𝑡 = tan−1 (
𝐶𝑤2𝑡

𝐶𝑎
) 

= tan−1 (
19

30
) 

∴ 𝛼2𝑡 = 32.35° 
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Now, you know, based on what understanding we have, we can do our calculation at hub station 

also, what we know from the free vortex concept, my 𝐶𝑤 ∙ 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Since, this constant 

at mid station it is known to me, I can do calculation what is happening at the hub. So, I can 

write down this equation as say 

𝐶𝑤2ℎ × 𝑟ℎ = 𝐶𝑤2𝑚 × 𝑟𝑚 

∴ 𝐶𝑤2ℎ =
𝑟𝑚

𝑟ℎ
× 𝐶𝑤2𝑚 =

0.15

0.1
× 25.33 

∴ 𝐶𝑤2ℎ = 38 𝑚/𝑠 

So, if you are putting these numbers, it says my Cw2 at the hub is coming 38 𝑚/𝑠. In line to 

what we have discussed, we can do our calculation for 𝛽1ℎ. Here also, remember this 𝛽1 we are 

calculating at the hub; so, you will be having change in your velocity triangle, do not forget, 

okay. So, make a habit to plot the velocity triangle, that’s what we will be giving you indication 

say you are putting your U at hub, okay. And, that’s what is giving me 𝛽1 at the hub. 

𝐹𝑟𝑜𝑚 𝐼𝑛𝑙𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 

𝛼1ℎ = 0 

𝛽1ℎ = tan−1 (
𝑈ℎ

𝐶𝑎
) 

= tan−1 (
23.04

30
) 



∴ 𝛽1ℎ = 37.52° 
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Same way, we can calculate based on our exit velocity triangle 𝛽2ℎ, okay. And this is what is 

similar to what we have done calculation at the mid-section inline to what we have done 

calculation at the tip-section, okay. And this is what will be giving me, what is happening in 

sense of my 𝛼2ℎ and what is happening in sense of my 𝛽2ℎ. 

So, if you look at, my 𝛽2ℎ, just careful, that’s what is coming -26.56°. Just look it, say on one 

side, we are putting this 𝛽2, okay.  

𝐹𝑟𝑜𝑚 𝑒𝑥𝑖𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑎𝑡 ℎ𝑢𝑏, 

𝛽2ℎ = tan−1 (
𝑈ℎ − 𝐶𝑤2ℎ

𝐶𝑎
) 

= tan−1 (
23 − 38

30
) 

∴ 𝛽2ℎ = −26.56° 

So, do not get confused that angle is coming negative just you need to put that or you need to 

the represent in such a way that it will be on the other side of my velocity triangle, okay. Now, 

if you look at my blade or say my aerofoil shape also will be changing accordingly, okay. Now 

𝛼2 you can calculate that’s what is coming 51.7°. 



𝛼2ℎ = tan−1 (
𝐶𝑤2ℎ

𝐶𝑎
) 

= tan−1 (
38

30
) 

∴ 𝛽2ℎ = 51.7° 
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Now, here if you look at, we have done all our calculation for Cw1 and Cw2 at different stations, 

we have calculated our flow angles. Now, let us move with the next step, that’s what is for the 

calculation of degree of reaction. So, my degree of reaction we can write down it is 

𝐷𝑂𝑅 = 1 −
𝐶𝑤2 + 𝐶𝑤1

2𝑈
 

Now, let us try to put that or rewrite. We can say, my peripheral speed at any station, that’s 

what is we are writing as say my peripheral speed at the mid-station into this radius ratio. 

𝑈 = 𝑈𝑚 (
𝑟

𝑟𝑚
) 

This r is nothing but that’s what is representing particular station and rm, that’s what is 

representing my mid station, okay. So, if you are putting this in the form of formula, it says my 

degree of reaction we can represent by this form. 

𝑇ℎ𝑒 𝐷𝑂𝑅 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒 − 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑, 



𝑅 = 1 − (
𝐶𝑤2 + 𝐶𝑤1

2𝑈𝑚 (
𝑟

𝑟𝑚
)

) 
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Let us try to say re-formulate that. So, this is what will be my degree of reaction. Now, what 

we are looking for is, say variation of degree of reaction at different stations. So, you can say, 

we can write down this degree of reaction in a more simplified way, it says degree of reaction 

it is given by 

𝐷𝑂𝑅 = 1 − (
𝐶𝑤2 + 𝐶𝑤1

2𝑈𝑚 (
𝑟

𝑟𝑚
)

) 

𝑠𝑖𝑛𝑐𝑒, 𝐶𝑤1 = 0 

𝐷𝑂𝑅 = 1 − (
𝐶𝑤2𝑟

(2𝑈𝑚𝑟2)
) 𝑟𝑚 = 1 −

𝐶

𝑟2
 

There is a reason behind calculating, you can straightaway do calculation by putting some 

calculation of say Cw2 at hub, Cw1 at say hub; you can put Cw1 at tip, Cw2 at tip that way also 

you can do the calculation. But, let me simplify this. So, it says this constant we are writing as 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
(𝐶𝑤2𝑟)𝑟𝑚

2𝑈𝑚
 



and this is what will be giving me my degree of reaction, that’s what is given by 

𝐷𝑂𝑅 = 1 −
0.0082

𝑟2
 

So, this is nothing but some constant divided by 𝑟2. Now, these r as we have discussed, they 

are different locations. We know what are our radius at tip, we know what are our radius at hub 

and radius at the mid station. So, let me write down degree of reaction at mid station, degree 

of reaction at hub and my degree of reaction at tip. 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠. . 

𝐷𝑂𝑅𝑚 = 1 −
0.0082

𝑟𝑚
2

= 1 −
0.0082

0.152
= 0.63 

𝐷𝑂𝑅ℎ = 1 −
0.0082

𝑟ℎ
2 = 1 −

0.0082

0.12
= 0.18 

𝐷𝑂𝑅𝑡 = 1 −
0.0082

𝑟𝑡
2 = 1 −

0.0082

0.22
= 0.795 

Let me put all these radius values at mid station, at hub and at the tip, that’s what is giving me 

the variation of my degree of reaction. So, if you look at carefully, it says my degree of reaction 

at the hub is coming 0.18, at mid station it is coming 0.63 and at tip it is coming around 0.79. 

So, you can say, for free vortex design, we will be having the variation of degree of reaction 

from hub to shroud, okay.  
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After doing all this calculation, let us move with the second approach, that’s what is say 

constant reaction approach and for this constant reaction approach, we are assuming our degree 

of reaction to be constant and constant work addition, okay. This is what all we know from our 

previous calculation for say peripheral speed at hub, peripheral speed at mid station and my 

peripheral speed at tip station. What we know, our degree of reaction, that’s what is given by  

𝑅 = 1 −
𝐶𝑤2 + 𝐶𝑤1

2𝑈
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Now, if you are arranging this term, it says, my 𝐶𝑤2 + 𝐶𝑤1, that’s what is given by 2𝑈(1 − 𝑅), 

okay. 

𝐶𝑤2 + 𝐶𝑤1 = 2𝑈(1 − 𝑅) 

What we know? We are having this Δ𝐶𝑤 term or change of Cw and Cw2 and Cw1, that’s what is 

also coming in my work equation. So, let me put my aerodynamic work and thermodynamic 

work to be same.  

If we are putting that, it says… my 𝐶𝑤2 − 𝐶𝑤1, that’s what we are representing in the form of 

𝐶𝑝Δ𝑇0

𝜆𝑈
. I am sure, this is what all we have discussed in our class, but this is just for your 

understanding what all we are working at this moment, okay. So, our requirement, it is to 

calculate what is my Cw1 and what is my Cw2, at entry and at the exit of my rotor. 

𝐶𝑝Δ𝑇0 = 𝜆𝑈𝑚Δ𝐶𝑤 

Δ𝐶𝑤 =
𝐶𝑝Δ𝑇0

𝜆𝑈
 

𝐶𝑤2 − 𝐶𝑤1 =
𝐶𝑝Δ𝑇0

𝜆𝑈
 

(Refer Slide Time: 28:47) 

 



 

So, if we will be putting, say… we are looking for our calculation at the hub station. So, we 

can write down, we are having two equations what we have seen; one, that’s what is in sense 

of degree of reaction, second, that’s what is instance of my Δ𝑇0. So, Δ𝑇0, that’s what is known 

to me and this degree of reaction, that’s what we are looking for, okay.  

So, it says, if we are assuming, say… our degree of reaction to be 0.5, that’s what is given to 

you, say at mid station or say this is what is at the hub station it is given say it is 0.5. If we are 

considering that because it is a constant reaction design. It says my degree of reaction to be 0.5, 

so you can understand at hub, my degree of reaction is 0.5.  

So, if I will be putting this in this equation for degree of reaction, and my work done equation, 

where I know all these numbers. If we will be putting this into case, it says my Cw1 and Cw2 at 

the hub station we can calculate, and that’s what is coming my Cw1 at the hub is -7.4 𝑚/𝑠. And 

my Cw2 at the hub is 30.44 𝑚/𝑠. 

𝐶𝑤2ℎ + 𝐶𝑤1ℎ = 2𝑈ℎ(1 − 𝑅ℎ) = 2 × 23.04 × (1 − 0.5) 

𝐶𝑤2ℎ + 𝐶𝑤1ℎ = 23.04 𝑚/𝑠 

𝐶𝑤2ℎ − 𝐶𝑤1ℎ =
𝐶𝑝Δ𝑇0

𝜆𝑈ℎ
=

1.005 × 103 × 0.85

0.98 × 23.04
 

𝐶𝑤2ℎ − 𝐶𝑤1ℎ = 37.83
𝑚

𝑠
 

𝐵𝑦 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑡ℎ𝑒𝑠𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, 

𝐶𝑤2ℎ = 30.44 𝑚/𝑠 & 𝐶𝑤1ℎ = −7.4 𝑚/𝑠 
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Now, once this is what is known to you, we can put our velocity triangle, be careful, we have 

done our calculation for Cw1. And if you look at this Cw1, that’s what is coming to be negative. 

Now, you are expert enough to make your velocity triangle, okay. So, you can say, I am having 

negative swirl, that’s what is coming at the entry.  

So, that’s what it says, my 𝛽1 at the hub, we can calculate it is Uh minus Cw1h. Since, this is 

what is in negative direction, you can say, that’s what is getting added up here. This is what is 

you need to take care of. That’s what is giving me my 𝛽1 at the hub as 45°, same way we can 

do a calculation for 𝛼1, that is coming -13.85°. Now, what design approach we are discussing? 

That’s what is constant reaction design approach.  

So, what it says for 50-person reaction? We will be having our blades to be symmetrical blade. 

So, for symmetrical blade what it says? my 𝛼2 and  𝛽1, that’s what is same, and my 𝛽2 and 𝛼1, 

that’s what is coming to me same. So, you can say my 𝛼2 and 𝛽1 that will be 45°, and my 𝛽2 

and 𝛼1, that’s what is -13.85°. 

𝛽1ℎ = tan−1 (
𝑈ℎ − 𝐶𝑤1ℎ

𝐶𝑎
) 

= tan−1 (
23.04 + 7.4

30
) 

∴ 𝛽1ℎ = 45° 

𝛼1ℎ = tan−1 (
𝐶𝑤1ℎ

𝐶𝑎
) 



= tan−1 (
−7.4

30
) 

∴ 𝛼1ℎ = −13.85° 

𝑊𝑒 𝑘𝑛𝑜𝑤 𝑓𝑜𝑟 50% 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛, 
𝑇ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 

𝛼2ℎ = 𝛽1ℎ = 45°   𝑎𝑛𝑑 

 𝛽2ℎ = 𝛼1ℎ = −13.85° 
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Inline to that we can do our calculation at the mid station. So, we can rewrite the equation and 

we will be doing our calculation for two different approaches; one, that’s what is constant 

reaction and by work done equation, we will be getting our Cw2 variation at the mid station, we 

can calculate our Cw1 calculation at the mid station. Once this whirl components, that’s what 



we are calculating with, that’s what will be giving us idea how to do calculation for variation 

of our flow angles. 

𝐶𝑤2𝑚 + 𝐶𝑤1𝑚 = 2𝑈𝑚(1 − 𝑅𝑚) = 2 × 34.55 × (1 − 0.5) 

𝐶𝑤2𝑚 + 𝐶𝑤1𝑚 = 34.55 𝑚/𝑠 

𝐶𝑤2𝑚 − 𝐶𝑤1𝑚 =
𝐶𝑝Δ𝑇0

𝜆𝑈𝑚
=

1.005 × 103 × 0.85

0.98 × 34.55
 

𝐶𝑤2𝑚 − 𝐶𝑤1𝑚 = 25.23 𝑚/𝑠 

𝐵𝑦 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑡ℎ𝑒𝑠𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, 

𝐶𝑤2𝑚 = 29.89 𝑚/𝑠 & 𝐶𝑤1𝑚 = 4.66 𝑚/𝑠 

So here, if you look at this is what is by 𝛽1. So, 𝛽1, that’s what we are calculating, just look at 

here at the mid station, my Cw1, that’s what is coming positive. So, that’s what is on other side, 

you can see my 𝛼1, that’s what is coming to be positive, it is coming 8.8°. Same way, as we 

are having our degree of reaction to be constant, and that to it is 0.5, we can say, we will be 

having symmetrical blading. 

So, it says my 𝛼2 at the mid station and my 𝛽1 at the mid station, that’s what is same and it is 

44.89°. We have our 𝛼1𝑚 and 𝛽2𝑚, that’s what is coming to be same, and that’s what is 8.8°. 

So, just look at how you will be changing your velocity triangle. So, this is what is my velocity 

triangle at the mid station, okay. Always, repeatedly I am saying, make a habit of plotting the 

velocity triangle when you are doing your calculations, okay. 

𝛽1𝑚 = tan−1 (
𝑈𝑚 − 𝐶𝑤1𝑚

𝐶𝑎
) 

             = tan−1 (
34.55 − 4.66

30
) 

∴ 𝛽1𝑚 = 44.89° 

𝛼1𝑚 = tan−1 (
𝐶𝑤1𝑚

𝐶𝑎
) 

= tan−1 (
4.66

30
) 

∴ 𝛼1𝑚 = 8.8° 

𝑊𝑒 𝑘𝑛𝑜𝑤 𝑓𝑜𝑟 50% 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛, 
𝑇ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 



𝛼2𝑚 = 𝛽1𝑚 = 44.89°   𝑎𝑛𝑑 

 𝛽2𝑚 = 𝛼1𝑚 = 8.8° 
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Now, at the tip station also, in line to what all we have discussed, we can do our calculation for 

Cw1 and Cw2 at tip station. So, this is what you can say my degree of reaction is 0.5, that’s what 

is giving my 𝐶𝑤2𝑡 + 𝐶𝑤1𝑡 at tip as some number. Same way based on our work balance, we are 

getting 𝐶𝑤2𝑡 − 𝐶𝑤1𝑡 = 18.92. Now based on that, we are able to calculate our Cw2 and Cw1 at 

tip station. 

𝐶𝑤2𝑡 + 𝐶𝑤1𝑡 = 2𝑈𝑡(1 − 𝑅𝑡) = 2 × 46.07 × (1 − 0.5) 

𝐶𝑤2𝑡 + 𝐶𝑤1𝑡 = 46.07 

𝐶𝑤2𝑡 − 𝐶𝑤1𝑡 =
𝐶𝑝Δ𝑇0

𝜆𝑈𝑡
=

1.005 × 103 × 0.85

0.98 × 46.07
 

𝐶𝑤2𝑡 − 𝐶𝑤1𝑡 = 18.92
𝑚

𝑠
 

𝐵𝑦 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑡ℎ𝑒𝑠𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠,                                                                

𝐶𝑤2𝑡 = 32.5 𝑚/𝑠 & 𝐶𝑤1𝑡 = 13.58 𝑚/𝑠 
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Now, as we have discussed, since my tip diameter, that’s what is larger. So, U value, that’s 

what will be coming to be larger. We can do our calculation for 𝛽1, that’s what we can have as 

say 47.29°. We have our 𝛼1 as say 24.35° and because of degree of reaction to be 50%, we will 

be having symmetrical blading. And, for those symmetrical blading my 𝛼2 and 𝛽1, that’s what 

is coming 47.29° and my 𝛽2 and 𝛼1, they are coming say 24.35°, okay.  

𝛽1𝑡 = tan−1 (
𝑈𝑡 − 𝐶𝑤1𝑡

𝐶𝑎
) 

             = tan−1 (
46.08 − 13.58

30
) 

∴ 𝛽1𝑡 = 47.29° 

𝛼1𝑡 = tan−1 (
𝐶𝑤1𝑡

𝐶𝑎
) 

= tan−1 (
13.58

30
) 

∴ 𝛼1𝑡 = 24.35° 

𝑊𝑒 𝑘𝑛𝑜𝑤 𝑓𝑜𝑟 50% 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛, 
𝑇ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 

𝛼2𝑡 = 𝛽1𝑡 = 47.29°   𝑎𝑛𝑑 

 𝛽2𝑡 = 𝛼1𝑡 = 24.35° 
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Now, after doing all this calculation, here, this is what is very important, that’s what we need 

to observe. So, this is what is representing the variation of my angle from hub, mid and tip 

station using pre-vortex concept and this is what is with constant reaction concept.  

So, here if you look at, say my Δ𝛽, if you are looking at for free vortex concept, we have 

discussed, that’s what will be coming to be large, okay. And, if we are looking at, say… 

variation of my Δ𝛽, that’s what is from hub to tip is coming larger, that’s what is giving highly 

twisted blade.  

Remember this is what is interpolation at particular three stations; hub, mid and tip-section. 

Now, here for constant reaction. If you are comparing these angles, these angles are coming to 

be lower, okay. And this is what is representing how my degree of reaction, that’s what is 

varying. So, this line, that’s what is representing my free vortex concept. And this line, that’s 

what is representing my 50% reaction concept. So, if you try to compare these two, it says at 

mid-section for free vortex, my degree of reaction is coming to be large, maybe around 0.65, 

okay. 

And that is the reason why if you look at, near the hub region, our degree of reaction is coming 

to be larger, maybe around 0.18, okay. And if you compare both the design approaches, it says, 

for free vortex design, approximately at 30% span, your degree of reaction is coming 0.5. So, 



I am sure, this is what will be giving you idea, when we are taking two different approaches 

for our design.  

Say… we have discussed about this design approach, that’s what is called free-vortex design 

concept. And we have taken the approach, that’s what is constant reaction design approach, 

okay. So, it is advisable that you do your pen paper calculation, literally sit down and do the 

calculation, that’s what will give you more confidence in sense of doing the calculation for 

variation of my whirl velocity components, variation of my degree of reaction, variation of 

flow angles. Thank you! Thank you very much for your attention! 


