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Methods for Approximate Solutions of PDEs Continued 
 

In this lecture, we are going to start discussing about another method for approximation of 

partial differential equations, which we call as the finite volume method. In the previous two 

lectures, you have learned about the finite difference method and now we move on to the next 

method, the finite volume method. 
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We will first look at the grid that we used for discussion in the context of the finite difference 

method. So, you can see the grid that we discussed about earlier. However, there is a small 

difference in comparison with the grid that we used for solving the problem in the last 

lecture. You can see that here you have 6 grid points rather than 5, which we had in the 

previous problem, but fundamentally there is no difference between the two grids.  

 

We have constant spacing between adjacent grid points and we have boundaries at the two 

ends of the grid where we expect that some boundary conditions would be imposed. Then we 

would be told what kind of governing equation is to be solved on this grid, and then the next 

thing that we bother about is how to generate approximate expressions for the derivatives, 



which figure in the governing equation. So, we have broadly understood how in a finite 

difference method we go through these steps.  

 

Just to recall, the whole process started with grid generation. We had a certain length over 

which a certain number of grid points were disposed in such a manner that we had constant 

spacing between adjacent grid points, and we understood that this way we can have a slightly 

simpler solution of the whole problem because the Taylor series would then be developed 

based on constant grid spacing, which is more convenient and more accurate in general.  

 

Now, let us look at where from we actually obtained the governing equations, which we tried 

to approximate when we were discussing about the finite difference technique. So, if you 

look back at your basic courses in fluid mechanics and aerodynamics or hydrodynamics, you 

would recall that we looked at very very small control volumes which were infinitesimal in 

extent. So, we used to draw control volumes looking like this. 

 

And then mark very small lengths along orthogonal directions and we used to say that each of 

these length scales should limit to 0. So, we were essentially talking about infinitesimal 

control volumes and the differential equations which form the governing equation was 

actually derived in such an infinitesimal control volume. Now, the moment we try to 

approximate the governing equation, we are introducing different errors in approximating 

them.  

 

The first error that we commit when we have a finite number of grids to represent the domain 

is that we try exactly satisfying the governing equation only at a few discrete points and 

nowhere else in the domain. There are big gaps left in between where we have no clue how 

good or how bad the governing equation is being satisfied. Also at these discrete points, we 

are only approximately satisfying the governing equation, because we have left out many 

terms from the Taylor series through the dropping out of the truncation error terms. So there 

are different levels of approximation which are actually getting into the solution. Now, if we 

try to look at how that infinitesimal control volume fits in this perspective, you would have to 

zoom deep into a grid point and then if you zoom deeper and deeper, you will find that 

infinitesimal control volume sitting there around that point with very small dimensions.  

 



So, essentially what we are doing is that we are trying to satisfy the governing equation as 

close to the exact governing equation as possible only in and around these grid points. Now, 

the question could be that why did we not think about making these control volumes bigger 

and giving them finite dimensions. So, that may bring in certain errors because the 

differential equation can actually be satisfied per se at distinct points. 

 

And the moment we try to make the control volumes bigger, then obviously there could be 

certain errors introduced in the process. But this could be a very interesting idea to pursue. 

Through this approach we will find a way which is better connected to the behavior of the 

physical world.  

 

We are trying to scale up these infinitesimal control volumes and then give them finite spans 

and fill up a certain length scale using finite sized control volumes. We were just discussing 

about the fact that what makes them more appropriate and closer to the physical world. One 

big aspect that makes them more appropriate is that they are just juxtaposed next to each 

other and therefore many of the conservation laws which we deal with through these 

governing equations can be exactly satisfied. 

 

When you juxtapose finite size control volumes and set them next to each other, so that one 

face of one control volume lets in a certain amount of mass for example, and sends the same 

mass out through another face which will be received by the next control volume. This 

principle is very close to the physical world, where we talk about conservation of mass for 

example when we are transferring it through different channels and pipes.  

 

For example, if you had a pipe delivering some fluid, you could divide the length of the pipe 

into different control volumes and then what happens essentially is that if some mass is 

entering the first control volume through its left side, then it moves out through the right side 

of the same control volume. So, what goes out of the right side of the first control volume is 

essentially going to enter the second control volume without fail.  

 

So L1 boundary, on the left side of the first control volume, lets in a certain amount of mass 

at a certain time rate. What enters through L1 is what leaves through R1 and then what leaves 

through R1 enters the second control volume through its left boundary L2 (R1 and L2 

boundaries are identical). So what are we talking about? We are talking about conservation of 



mass by default if we are having such a system of side by side control volumes like the ones 

we have drawn here. So, the control volumes are essentially next to each other sharing 

boundaries. 

 

And what these boundaries are doing is that they are transferring flux, it could be mass, it 

could be momentum, it could be energy, but by and large, we are talking about flux 

movement and this is something that is very closely connected with the physical world and it 

is quite intuitive as well. However, in the finite difference calculations, we never get the 

sense of the flux.  

 

We just talked about locally satisfying the differential equation as best as we can with higher 

order of accuracy as far as possible and then we have no feeling of movement of flux, and 

this is what makes finite volume method a very strong method in the sense that it is very 

closely and inherently connected to the conservation equations. Therefore, the physical world 

is much more reliably and better modeled through finite volume technique because of this 

property that it inherently takes care of conservation of fluxes. 

 

Again remember that it could be different types of fluxes that we talk about. It could be mass, 

it could be momentum, it could be Energy, it could be species and so on. Every time that we 

talk about a flux, we are certainly going to see conservation of the flux by default if we are 

properly implementing the finite volume method. So, we have to keep in mind that this is 

perhaps the strongest point of the finite volume method. 
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We were talking about governing equations where we see derivatives. In finite volume 

method however, we deal with the integral form of the conservation equations. So, we do not 

use the differential form, but rather we use the integral form. Keep in mind that finite 

difference method was dealing with the differential form of conservation equations, while 

here we are going to deal with integral forms.  

 

Additionally, finite difference method is closely connected with the infinitesimal control 

volumes and therefore we try applying finite difference method to distinct grid points; while 

in finite volume method, because it has an integral approach instead of a grid point based 

approach, we scale up an infinitesimal control volume to a control volume which has finite 

dimensions. Note that the control volume no longer has infinitesimal dimensions.  

 

This is the difference between a control volume of infinitesimal size limiting to a point in 

finite difference technique and a control volume with finite dimensions used in a finite 

volume technique. So, the control volume can have dimension delta x, delta y, delta z and 

these dimensions are not infinitesimal. They are finite, but of course they are small as well. 

We tend to keep them small for the sake of better accuracy. Again another very commonly 

used feature in finite volume method is that we tend to make these volumes look bigger or 

smaller by choice wherever we need them that way. 

 

And this choice of sizes is done more conveniently in a finite volume method, usually more 

conveniently than the finite difference method. 
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The fact that we have now expanded the control volume to make it occupy a finite dimension, 

we have the extent of a one-dimensional control volume here. We continue to use a one-

dimensional domain like we did for the finite difference calculations and discussion. So, even 

here for the discussion of the finite volume method we are using the same one-dimensional 

problem or one dimensional domain. 

 

But here we are noting that we have a certain extent which we are defining as a control 

volume, so it is nothing but a small element spanning a certain length along this direction. Of 

course, it also has dimensions in the two other orthogonal directions. We can always go about 

defining that. So, if this is direction x, then it does not mean that the control volume 

essentially needs to have infinitesimal dimensions along y and z.  

 

As I discussed earlier, it can have finite dimensions along all 3 orthogonal directions. 

However, the nature of the problem is such that it only has x dependence and therefore 

essentially, we can represent the control volumes by just drawing a straight line and dividing 

it into number of segments and each segment would be representing a particular control 

volume.  

 

Now, the control volume has a certain extent, say given by this interval x . We need to 

remember that this x  is no longer the distance between two neighboring grid points, but 

rather it is the length of one control volume and then what we would end up doing is that if 

this is our control volume, we set a control point at the center of the control volume.  

 

So, we choose to have a control point which is often called as a node and it is located at the 

center of the control volume. Now, since this is a one-dimensional control volume, we can 

call this direction as east, this direction as west and we can name this face of the control 

volume as small e, this face of the control volume as small w for example. So if you want to 

show more control volumes in the neighborhood, then you have to have a more elaborate 

diagram in place.  
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Let us try to draw a more elaborate diagram and show the lengths which are of interest to us. 

Let us say that this is a control volume, which is of direct interest to us. So, it has a certain 

length, a total length which we will mark as a Px . We name this control volume as the P 

control volume and then this could be the east face of P, this could be the west face of P and 

then we can move on to neighboring control volumes.  

 

So, maintaining the same direction, east, west, if you wish south and north. You could have a 

control volume here on the east, you could have another control volume here on the west, and 

note that this control volume definitely is wider than the control volume P. While this seems 

to be of the same order as P, it could be a little smaller or a little bigger. So, we have 

flexibility in defining the lengths of the control volumes.  

 

Again, it is always better to have a clearer definition of these distances from the nodes to the 

faces. You would often need these distances when you do finite volume calculations. So let 

us say if you are looking at the distance between the node of the control volume P to its west 

face. So, you may like to put some nomenclature of your own saying that this is delta xp and 

if this is the center, then it is cw let us say, 
cwPx .  

 

Again this distance may be marked as 
cePx . You could have other ways of putting the 

nomenclature as well, but it is essential that you take note these lengths. Also as you can 

understand that if you go to a neighboring cell, let us say the west cell and you try to find out 



the Wx and then if you call this point again for the w cell as e it would be 
ceWx  and so 

on. Similar things may be done along the y direction.  

 

So, then you would have neighboring cells along north and south. That will typically be the 

situation in a two-dimensional problem and you could have nodes along the direction coming 

out of the plane of the paper and into the plane of the paper where you can have nodes named 

as a top and bottom node, let us say along the z direction, and that would be required for 3D 

problems. 
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So, we briefly looked at the basic framework of discretization, the way we do it for the finite 

volume technique. In a way it is similar to finite difference because we are dividing a certain 

length scale into sub intervals, but then we are not distributing grid points, we are creating 

control volumes and the control volumes are set side by side facing common faces or rather 

sharing common faces. 

 

And therefore from a conceptual angle, there are distinct differences between the two, though 

often when you look at grids which are created for finite difference calculation and finite 

volume calculations, they may seem to be very similar to each other. Again remember that in 

finite difference calculations using non-uniform mesh is always more complicated, while that 

is rather easy to do in finite volume technique.  

 



Again if you have very complex geometries to work with, finite volume is a much more 

flexible and easy to adapt method compared to finite difference method. For example, if you 

have very strange looking surfaces on which you have to implement certain boundary 

conditions in a finite difference framework, it could be quite difficult to do because in finite 

difference method we usually use grids of this kind. 

 

And therefore in order to approximate the boundary, you will not be exactly able to match the 

points on the boundary and the grid points which are available. So, these are the points on the 

boundary while these are the grid points available from the finite difference mesh and they do 

not match. Thus, in order to enforce boundary conditions, it may be very cumbersome to use 

finite difference mesh.  

 

However, it is quite easy to do it in finite volume technique because of the flux conservation 

approach which is inherent to finite volume method. So, if you have control volumes which 

are very arbitrarily oriented to each other and which are also quite arbitrary in shape, it 

creates no problems in ensuring flux balance. If you look at a cell like this, it may allow mass 

flux into itself from this direction. 

 

If this is bounded by some solid surface, so if this is part of a solid surface at the bottom and 

this part on top and you have discretized the intermediate domain by using these cells, then 

whatever enters this cell from these two faces is bound to go out through this remaining face 

and then when it goes out, it goes out to the neighboring cell here through one face only and 

then the neighboring cell exactly transfers the same mass into this cell.  

 

Once it gets into this cell, it has freedom in transferring mass through two faces to 

neighboring cells and so on. So mass will never get lost anywhere. Conservation is 

guaranteed and what you see over here is very complex control volumes, which is rather 

regularly used in finite volume technique without much difficulty. This amazing flexibility 

and the inherent ability of guaranteeing conservation of fluxes is the major strength, the 

cornerstone of finite volume technique. 
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We now look at general transport equation for a property φ and we have written the transport 

equation in two forms. One is the differential form, the other is the integral form. We said 

that in the finite difference method, we use the differential form while in the finite volume 

method we use the integral form. So, we need to take note that both these equations are 

accounting for unsteady effects, they are accounting for advection. 

 

They are accounting for diffusion and possible sources in the domain. In one case, the 

equation has a differential nature. In another case, the equation term by term is integrated 

over a finite control volume. So, obviously the second form is more appropriate for 

discussing the finite volume technique. We will discuss more of this in the next lecture. 

Thank you. 


