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Lecture – 64 

Structured and Unstructured Grid Generation - Continued 

 

We continue our discussion on structured and unstructured grid generation. So in the previous 

lecture, we had talked about the concept of matrix. Jacobians, how to use them for grid 

transformation, how to use them for transforming governing partial differential equations. We 

also have discussed about how to use algebraic methods in order to do grid clustering 

including logarithmic and hyperbolic functions.  
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So you may recall that when we started the detailed discussion on structured grid, we had 

indicated that there are broadly two methods by which we pursue it. One is the algebraic 

method. The other is a partial differential equation method. So we have discussed to a good 

extent on algebraic method. Let us now start discussing about the partial differential equation 

method.  

 

Now, from our experience on partial differential equations, we already know that they can be 

categorized into elliptic, parabolic and hyperbolic partial differential equations. When it 

comes to grid generation, we also have all these equations helping us generate grids, but we 

are primarily going to confine our discussion on elliptic grid generating methods or elliptic 

equation-based grid generators. So let us call it elliptic grid generator.  



 

Let us try to first understand the idea behind deploying partial differential equations for grid 

generation. So let us say we have a square domain and we have set a constant temperature all 

over this square domain and we are trying to solve the steady state temperature distribution 

problem in this square domain, which we have discussed at length in the context of elliptic 

partial differential equations.  

 

So we know from experience that if we try to calculate this problem everywhere we will 

come up with a solution of T1 in the internal grid points because the boundary conditions are 

uniform. So this is a trivial problem apparently, but that means that if you were to plot 

isotherms, everywhere you will be able to show the same level in this problem, but when 

does that scenario get changed? 

 

If I am not disturbing the boundary conditions, but I am just incorporating a heat source into 

the domain, then how would the problem change? Let us say, I have defined a hotspot just at 

the center of that region. Then I will now see isotherms developing like this around that 

hotspot and as they spread the levels gradually coarsen out, that means you have very rapid 

change in levels, very close to where the heat sources and then the changes become more 

gradual.  

 

So these are isotherms, but they give us a very important clue that in an analogous manners 

would this incorporation of sources help us in the grid generating sense. That is if we do not 

have a source, then we have a kind of a uniform mesh scenario corresponding to a single 

isotherm level and you have a non-uniform clustered mesh which is associated with change in 

isotherm levels.  

 

So using this analogy, partial differential equations were deployed in the grid generation 

world and then they were first deployed without any source terms and they were later 

deployed with source terms and that clearly indicated how the behavior of the grid or the 

mesh that they produce changed with control coming in in terms of getting the mesh refined 

in certain desirable regions of the flow or getting the mesh more orthogonal to a certain 

boundary and so on.  

 



So, all those controls over the grid came later by tuning the source terms in the differential 

equations. So this is broadly the basis on which the partial differential equations are deployed 

in the grid generation exercise. So let us propose these two equations, which are Laplace 

equation in xi and eta. Of course, this is in physical space. 
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If we interchange the dependent and independent variables, which we have discussed in an 

earlier lecture on grid generation. Through this process, we will be able to obtain forms of 

these equations, which are readily computable in the transformed plane that is the xi eta plane 

where we will have a uniform domain. We are not deriving these equations, but you can 

certainly do it as a homework exercise for better understanding.  

 

All that you have learned in terms of transformation should be sufficient for you to obtain 

these equations. Only thing that you have to keep in mind is that this involves second order 

directives and therefore the competitions will be more involved or rather obtaining the 

transformation relations will be more involved. So you may recall that we had tried doing that 

exercise for a term like del to f del x square in the previous lecture.  

 

So you have to follow the same approach in order to do it for the derivatives in the context of 

Laplace equation. Now having said this, we now have defined the Laplace equation in 

computational domain. So Laplace equations for both xi and eta in computational domain by 

interchanging the dependent and independent variables. What we have done is we have 

actually written the differential equations in terms of x and y.  

 



So notice that xi and eta now are the independent variables, earlier they were the dependent 

variable. So now they have changed role and the dependent variables are x and y and x and y 

are essentially going to decide on the grid locations in physical plane. 
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Now, before we proceed further, we also have to understand certain concepts of physical 

domains where this exercise can be carried out. So we have to categorize the physical 

domains where this exercise can be carried out. So we will discuss about three possibilities. 

One is simply connected. Let us start the discussion with that. So a simply connected domain 

will look like this. This is just an example, you could have many other examples for this.  

 

Let us say that this is a boundary and this is a region of flow surrounding the boundary and 

this portion which is shown by red color is your computational domain. Now what we will do 

is we will define your xi and eta directions in physical plane and also indicate your indices. 

IM is the maximum index level for I, JM is the maximum index level for J and imagine that 

your grid lines are kind of deployed like this.  

 

So you have chosen to use the elliptic partial differential equation based grid generator to 

generate this mesh, but remember that like in solving elliptic equations we need boundary 

conditions either in Dirichlet or Neumann sense, rather purely Dirichlet or mixed Dirichlet 

Neumann to have a well-posed boundary condition. So similarly, it has to be done like that 

here. You have to give the mesh generating program, the initial condition and the boundary 

condition.  

 



So boundary conditions essentially means the grid points locations that is their x and y 

coordinates have to be clearly specified all along the boundary and they will remain that way 

all through the computations. Only thing that will change as computations proceed are the 

internal grid point locations. That means only these grid point locations will change as 

computations progress.  

 

This is very important and this is exactly analogous to what you have done for elliptic 

equations earlier. Having said that we need to see how the things look like in the 

computational domain. So as we know the computational domain is regular and rectangular, 

so the mapping how does it take place? It takes place this way. So this is your xi, this is your 

eta. So this is how the things will get mapped.  

 

So you have 1, 2, 3, 4, 5, 6, 7 intervals along xi. So exactly 7 intervals even here in the 

computational domain and you have 1, 2, 3, 4 intervals along eta, same thing here in the 

computational domain, constant delta xi and delta eta. So this is how the system looks like. 

Now this is a simply connected domain. It will become more clear why we are calling it 

simply. Let us take it to the next level where we have a doubly connected domain.  

 

Let us say we are solving flow past an airfoil. How do we handle the mesh here? Green is the 

surface of the airfoil which sits inside or rather for clarity we will make it blue and the grid 

sits adjacent to it, actually coincident with it, but for the sake of clarity and understanding we 

are just showing it slightly apart and we would indicate different regions of the grid. Let us 

call them like this. The outer boundary is B2.  

 

There is a cut in the grid. Upper part of the cut is B3, the lower part of the cut is B4, part of 

the grid which wraps the body is B1 and where these two cuts meet, we call that as the point 

C and we will introduce the direction of i and j. So the yellow colored region is a solid region 

where no flow can enter, it is surrounded by the blue, which is the boundary of the body and 

you are wrapping the mesh which is given by red color around that body. 

 

And then apparently there is a cut region in the mesh as though we have put the scissors into 

the flow field and cut it apart over there, but for now the cut just remains that way that it has 

not fallen apart. Now, if somebody stretches that, how will it look? Let us try to draw it. If 



that portion is slightly stretched, then it might look like this. That means if somebody 

stretches it along these two directions, then this cut will open up.  

 

Where is the airfoil, the airfoil is still sitting inside that cut. Let us mark the airfoil in yellow. 

So how would we indicate the different regions in this diagram? This is how we will indicate 

them. Apparently, there are two C’s now because you have stretched it and taken it apart. 

This is a B1 which is no longer coincident with the body boundary, so it has now created a 

gap with the body. Now this picture if you were to represent it in the computational domain, 

how would you represent it?  

 

This is the airfoil B1, on one side B4, on the other B3. This is the outer part of the grid B2. 

These are C’S. We can call this as A, if you want to call it A, then remember that A must lie 

somewhere here. That is the trailing edge of the airfoil. So B1 wraps the airfoil. B4 and B3 

are boundaries in the fluid domain, which are coincident. B2 is the outermost boundary of the 

flow domain. This is how the mapping takes place. So all this is of course flow domain. 

 

Again, B4 and B3 essentially are same lines, just for sake of understanding we have shown 

that split, but in the physical domain they are as though coincident with each other. You are 

creating a cut so that computationally you can transform it to a domain which looks regular 

and rectangular like this without which you would not be able to transform it because the 

body is sitting embedded inside the flow. What is the difference with this situation?  

 

Here, the flow was surrounding the body, the body was not embedded within the flow, but 

here the body sits inside the flow and that is why the cut had to be created. The moment you 

do that, you have a so-called doubly connected domain as though one part is coming from 

this end, another part is coming from this end and getting connected, which means a double 

connection, which can wrap the grid around the body.  

 

This type of grid incidentally is called as O-grid because it has the shape of O broadly and we 

have now understood how the mapping goes on. Now, when you deploy the grid initially, you 

can deploy a grid for this problem or the airfoil problem by using say an algebraic method 

that is your initial grid. Remember that that initial grid, whatever grid points it defines for the 

boundaries, one boundary is B1, another boundary is B2.  

 



These boundary grid points would not change, but what can change, the intermediate grid 

points can change like we had shown in this yellow region. How do they change? As the 

partial differential equation based grid generator works on those grid points, it iteratively 

defines their location and therefore they change. Now, remember that B3, B4 these 

boundaries are also lying within the flow where the grid points can change. 

 

But only thing that you have to keep in mind is that they should change in a coordinated 

manner. That means the value corresponding to this mesh point and this mesh point, they 

should give you identical values of x and y in the physical domain. They cannot have 

separate x and y values because then B3 and B4 boundaries would not be coincident 

anymore. So that is a very, very important fact.  

 

If you have to change grid point locations at boundaries B3 and B4 you have to do it in a 

coordinated manner. Again, remember the way i and j indices are moving here, which were 

indicated by the black arrows, so i wraps from the trailing edge of the airfoil in a clockwise 

manner surrounding the entire airfoil and finishing the i levels and j radially moves out. So 

these are important details one have to keep a watch on to understand the process by which 

we are defining the grid layout.  

(Refer Slide Time: 23:09) 

 

Now, if you go one more level, you can have a multiply connected domain. So we have seen 

simply connected, doubly connected, now it could be a multiply connected domain. So there 

may be say two bodies in close proximity around which you are wrapping a grid. In that case, 

you create cuts like this and you create a boundary like this and you cut and you define 



different regions and then we will see how the entire thing gets mapped in the computational 

domain.  

 

Now you see 2 cuts. We are not keeping them apart now because we have already understood 

the basics. So this is airfoil 1, this is airfoil 2 and then in the computational domain, how does 

it look like? In the computational domain we have to keep in mind that we have number of 

regions to mark. So we need to understand B1 and combined B7, B8 are the bodies. So B1 is 

essentially A1 and this is A2, airfoil 1, airfoil 2 and B5 and this should be B6, these are flow 

regions.  

 

Again, you have B4 and B3, which are flow boundaries and then the outer boundary is 

represented as B2. So this is a more complex transformation, which we are seeing over here 

in a multiply connected domain. Now, we were looking at the partial differential equations in 

computational domain. If we were to discretize them here, one of these equations in x, the 

equation in x would be discretized like this on any one of these problems simply connected, 

doubly connected, or multiply connected.  

 

The exercise is very similar as long as you have created the correct transformation between 

the physical domain and the computational domain, the mapping through these diagrams that 

we have drawn here, the rest of the exercise is just to get the equations discretized and apply 

the suitable boundary conditions and as we said that the initial grid gets generated from say 

an algebraic grid generator and then it is refined by the elliptic grid generator, which is 

discretized in this manner.  

 

So as you can understand that this equation gives you an evolution equation in xij, which gets 

iterated. So at any iteration level k, xij is the coordinate for a particular grid point in physical 

space, but it is getting iterated in computational space. So as it gets iterated in computational 

space, the physical image, the physical location gets changed gradually. So in physical space, 

the grid point is gradually moving towards an equilibrium location. 

 

And all grid points are moving this way apart from the boundary grid points and then finally 

reaching a steady or converged location. So like we have checked for convergence in many 

other instances in iterative calculations, we do convergence checks based on say RMS values. 

Till we reach a good amount of convergence, we continue these iterations.  
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And then finally if you want to do some kind of say grid point control, either in sense of 

improving orthogonality or grid clustering, such things are best done not with Laplace 

equation, but in the form of source terms. That means that gives us Poisson equation. So you 

will get some source terms suitably in both these equations, let us call them as P and Q and 

then if you are just change the role of independent and dependent variables, you finally would 

get equations of this form in terms of Jacobians. 

 

And of course, you have to choose these functions P and Q with care so that the desired goal 

is reached, either in terms of orthogonality or grid clustering the desired goals are reached. 

Usually, we find that exponential terms in these sources would attract the lines of constant xi 

and eta close to the desired boundary and also enforce orthogonality. So usually, exponential 

functions are preferred for P and Q. So with this, we finish our discussion on structured grid. 

We will discuss on unstructured grid a little more on detail in the next lecture. Thank you. 


