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In this lecture, we continue our discussion on structured and unstructured grid generation. 

Last time we had discussed more on the structured mesh of the structured grid. This time also 

let us look at a bit of unstructured grid issues to little more detail. We take note that in the 

industrial CFD world, unstructured mesh happens to be the workhorse. Very often of course, 

they also use a so-called hybrid mesh. 

 

Where part of the domain is discretized using a structured grid and in the remaining 

unstructured grid depending on complexity of geometry and also accuracy issues. We have 

briefly discussed about the accuracy issues in the last lecture that in general structured grids 

provide a higher formal order of accuracy than unstructured grid. So when you are resolving 

the flow close to a surface, then you might like to have a layer of structured grid close to the 

surface, which is well refined. 

 

And beyond that it may be a region covered by unstructured grid and unstructured grid layers 

can also be coarsened quite rapidly in comparison to structured grids that can also save a lot 

of computational expense. So in regions where the gradients are weaker, you can afford to 



have coarser mesh while strong gradients which are often produced due to rapid changes in 

the geometry of a body surface or viscous effects like we see in boundary layer kind of flows, 

you need to have a refined mesh so that you can capture the gradients well.  

 

Just to show you an example if you have a velocity profile, which looks like this close to the 

wall, then you can expect that only a very refined mesh will capture the large gradients which 

are existing here close to the wall. So if you were to have a very, very coarse mesh where the 

grid points are so far apart, you will not be able to capture the gradients satisfactorily. What 

you need over here is far, far more refined mesh distribution, so there will be a large number 

of points in this region close to the wall.  

 

Again as we said that if there are rapid geometry changes or which flow is taking place even 

there, you need to have very well refined mesh close to the wall to capture the rapid geometry 

changes. So we have to be very careful about these issues when we deploy the mesh. Going 

back to the issues of unstructured mesh, we see the second point says that cells are allowed to 

be assembled freely within the computational domain with no limitation on how many curves 

can pass through a node.  

 

So this we had discussed earlier in the context of structured grid that if it is a 2-dimensional 

grid, then two lines from two different families can intersect at a grid point, but that kind of 

restriction does not exist in an unstructured mesh. So if you have a grid point or a node in an 

unstructured mesh, many lines can converge there. That is basically because there are many 

elements surrounding that node. So it must be in that portion of the grid where the grid is 

fairly well refined.  

 

As a consequence, you have a lot of connectivity information which has to be built up. 

Connectivity information is rather simple here, but it is quite complex over here. So you have 

to have connectivity information with regard to nodes or grid points, faces, cells, and they 

have to be stored into appropriate arrays. Sometimes, we will see that in certain fluid 

dynamic problems, the mesh also needs to change with time.  

 

So if you are having such a scenario, the mesh also gets enormously deformed because there 

may be a moving boundary and the way the boundary moves may necessitate additional of 

cells in some region of the flow and deletion of cells from some other region of the flow. In 



that case, the connectivity information has to be rebuilt based on how the mesh is evolving. 

So connectivity information in terms of node is like if you call this node as the ith node, then 

you need to see that which are the faces that that mode chairs.  

 

So these are the different faces that that matchers, which are the cells of which this node is 

apart. So this is what we mean by connectivity information. So when I call a particular node 

by its index, then I should have this information coming up straightaway. Only then after that, 

the solver can be told how to go about doing the flux calculations across all these faces which 

are surrounding this node and that of course involves so many different cells which are 

having those faces and so on.  

 

Again, remember that not all of the domain may be filled with the same kind of geometry 

where we see triangular cells. You can actually have a mix and match of cells. So triangular 

cells of course are widely used in 2D, tetrahedral cells in 3D. So tetrahedral cells would look 

like this. You have a set of triangular faces. So you can see these two faces are visible and 

there are another two faces which are behind. So that can be kind of visualized with that 

dotted line.  

 

So each one of the faces are essentially triangular. So that builds tetrahedral itself. Of course, 

we already discussed about using quadrilaterals or hexahedral cells in the context of 

structured grid generation. Even those kind of cell geometries may be used in unstructured 

grids and again cells with different shapes can be used to fill up the domain. For example, 

you may have triangular cells neighbored by quadrilaterals cells depending on geometry 

changes, etc. in the domain.  

 

Complex geometries are very well tackled by unstructured measures and that is one of the 

major reasons why we use them in practical applications and they are also very suitable for 

high curvature boundaries, but one thing that we have to keep in mind is that they are very 

robust in terms of handling convex geometries, but when it comes to concave geometries, we 

have to apply them with care.  

 

Most of the grid generators do an excellent job with convex geometries, but only the best 

ones handle concave geometries well. In complex geometrical features, structured body-

fitted, nonorthogonal grid has a tendency to generate highly skewed cells and that is one of 



the reasons why unstructured grid you know dominates over structured grid in complex 

geometry situations.  

 

So first thing is that because they have to remain body-fitted, they stress themselves too much 

making the cells highly skewed and they also are often nonorthogonal. And we already 

discussed that being nonorthogonal can have adverse effects on accuracy and also stability. 

So there are complications which are associated with bad mesh quality. So we have to have a 

check on mesh quality before solver starts computations.  

 

So if you are using some commercial or open source mesh generators be careful that there 

should be such steps available where you can check the mesh quality, and if the quality is not 

acceptable, then there are some more iterative corrections which have to be done before the 

mess actually comes up to an acceptable quality level before you offer it to the solver to do 

the computations.  
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Let us do some more detailing on the structured mesh which we had discussed at some length 

in the previous class. Today in this lecture, we are going to discuss about some techniques by 

which you can obtain structured measures. One is the algebraic technique, the other is partial 

differential equation-based technique. Let us deal with some simple examples for each one of 

these categories.  

 

Let us say we have a trapezoidal domain which looks like this, and we are trying to fit a mesh 

in this domain. We are currently discussing it in the context of algebraic mesh generator. As 



you can understand that instead of a trapezoidal domain if it was a rectangular domain for 

example, this would have been a trivial problem. Now, what you see is that we have fitted a 4 

by 4 mesh here in this domain and we have kept uniform spacing at the boundaries.  

 

So if you have 4 spacings here along x and 4 along the y directions on the two different 

edges, then these grid spacings can be indicated like this. Now, as you can understand if you 

watch carefully, some of these regions of the mess, there is a lot of nonorthogonality, but we 

are not addressing that issue right now, rather we are trying to address the issue that how we 

can do a simple calculation by means of which we can take this domain to a regular 

rectangular domain.  

 

So, this is a non-regular or non-rectangular domain in physical space and we want it to be 

transformed to a regular rectangular domain in a transformed space. As we do that, what we 

need to understand is that when we transform, we really do not need to transform the grid 

along the x direction because we do not have any nonuniformity in the spacings along the x 

direction. The nonuniformity exists only along y.  

 

So this is a rather simpler situation, not often seen in practical applications, but this is a good 

point to start. So, we would suggest a transformation like this, y top is indicated by the term 

yt where t stands for the top boundary and yt is essentially this upper boundary, which is 

defined like this.  
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Now, if you do that transformation, what happens is you can actually generate the regular 

mesh like we drew in the previous diagram. That simple transformation converts the problem 

to a regular mesh and then in that regular mesh delta xi remains as L by 4 and delta eta 

remains as 1 by 4. Why is it 1 by 4? Because through the transformation, eta is equal to y by 

yt, you have actually normalized the y coordinates. So this is how the scaling works.  

 

So this is the first instance which shows that you can look at the grid both in the physical 

space as well as a transformed space. Very often in the grid generation wall, especially in the 

structured grid generation wall, we tend to solve the problem by taking it to a transformed 

space. Again, remember that when we transform, we do not only transform the grid, we 

transform the grid as well as the governing equations. So transformation has to be done in 

coordination. So this is one of the important concepts which we will revisit shortly.  
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Let us take another example where we look at grid clustering. We have been talking about 

using grids which are well refined near boundaries in order to capture viscous effects and 

things like that. So, let us see how we can do it in the context of algebraic grid generation. Let 

us draw domain where we assume that the bottom boundary is a solid boundary and next to 

that we need to refine the mesh significantly. 

 

And of course, we are looking at the mesh in a very zoomed manner so that the finest mesh 

levels are not well visible to us. Of course, they are all individual parallel lines, they do not 

cross each other, and as you can understand you can always generate the lines of the other 

family, but there is nothing much exciting about that. The excitement lies in this direction 



that is where they are actually very well refined and then they are gradually coarsening out as 

you go away from the wall.  

 

Let us assume that the thinnest layer has a thickness a, the next layer has a thickness ar, then 

ar square and so on, where r is a common ratio. If you have r greater than 1, then that means 

the thickness is gradually going to increase that way. So you have the smallest thickness 

multiplied by a common ratio, which is greater than 1. So, the thickness gets slightly 

enhanced at the next level and so on.  

 

So if you sum up these individual cell thicknesses, you can write this as, so this is essentially 

the nth term and we know that this sum is given by where r is greater than 1. So let us say 

that we have been provided the values of H that is the height, the common ratio and the 

number of cells we want to put in that layer. If that is so, then you have an expression for the 

smallest cell thickness. Once you get that, how do you know that that is sufficient for you?  

 

Let us say if you are doing a turbulent flow calculation. In our previous lecture on turbulence 

modeling, we got to learn how to calculate y+ based on the first grid point away from the 

wall. So that is where we actually need to check for y+. So with the a that you have obtained, 

you try to find out what that y+ plus is. If it is within the acceptable level, you go ahead with 

that choice of a. If it is not acceptable, then you try to alter some of these parameters till you 

get an acceptable a.  

 

Never use too large a value of r because that creates enormous amount of stretching from one 

cell to the other and that gives you highly skewed cells or high aspect ratio cells, which is not 

good for your solver calculations that will degrade accuracy or even affect stability of the 

calculation in the near wall regions. So, we have to very carefully tune these parameters till 

we get the numbers right. Of course, this is not the only way you can cluster grids near to the 

surface, but this is one of the simplest ways you can try doing.  

 

In another lecture in Navier-Stokes equations, you remember that we had discussed about a 

lead driven cavity problem. So you understood that because there are sharp corners in the 

cavity, there would be a lot of interesting flow phenomena occurring there. So that is a 2-

dimensional problem where you would be interested to do the grid clustering along 2 

different directions because doing it in 1 direction is not enough.  



 

So in that case, you find certain things happening here. One is that we are applying the grid 

clustering both on top and bottom walls, again we are doing it on the left and the right walls. 

That means if you use this method, then this method has to be used repetitively as we 

approach each wall, so that you can get proper grid clustering in the corner regions 

especially. Why are we very interested to do that?  

 

Because we know that there are going to be rich vortex structures which can be captured at 

these corners. If you approach those corners, you might see very small vortex structures 

developing like this and the larger vortex structures are beyond that and if you go to high 

Reynold number flows, then what happens is as we realized the other day during our 

turbulent modeling lectures that there is a large scale separation between the smallest eddies 

and the largest eddies.  

 

So unless you have a very refined mesh, you will not be able to capture the smallest eddies. 

So these are very important aspects associated with the flow problem itself, which you have 

to realize when you do the grid generation.  
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We were talking about transformations few minutes back. We need to go into the details of 

transformation a little further. Last time we had taken a trapezoidal domain, this time we have 

a more involved domain which is quite highly curved and therefore it is obvious that you 

cannot do a transformation along one direction and not do it along the other direction and 

have a nice transformation relationship buildup.  



 

So you have to transform along both directions. So this is the domain how it looks in physical 

plane and now that you realize that transformation should be applied both along xi and eta, 

you would be interested to take it to a domain which looks like this. So we have to keep count 

of the number of intervals because as you can understand the transformation does not change 

the number of intervals along different directions.  

 

Only thing is it kind of straightens up the geometry. So this is how it looks and you have a 

uniform mesh in the transform plane like this. Now that means the xi plane or rather the 

function xi as well as eta would be functions of x and y. So from chain rule, a partial 

differentiation you can write it this way that any change along x will be reflected this way in 

the computational domain. We can just use simpler nomenclature for these.  
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Once we have that, let us try applying it to a simple partial differential equation say 

continuity equation in 2 dimensions. Also, remember that this transformation exercise can be 

done for 3 dimensional problems also, only thing is it gets more involved. So if it is 

continuity equation, then we say that u is a function of xi, eta and so is v, and then using the 

chain rule expressions you can easily show, which means that the transformed continuity 

equation looks like this.  

 

So realize that it will be very difficult to discretize this equation in physical space because 

you do not have any delta x, delta y available because it is a highly curved domain, but it gets 

much easier to solve it in the computational space because you are computing the velocity 



derivatives with respect to xi and eta and you have a uniform mesh in the computational 

domain to do that. The problem remains that how you would calculate these parameters, 

which are often called as metrics of transformation. We will discuss more on this in the next 

lecture. 


