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Basics of Interface Capturing Methods for Applications in Multiphase Flow 

 

In this lecture, we will begin our discussion on interface capturing methods for application in 

multiphase flow.  

(Refer Slide Time: 00:32) 

 

In this slide, let us look at the basics of multiphase flow modeling. So, in multiphase flows, 

we say that there is presence of multiple phases in the domain of interest and we would have 

different possibilities here. So, there could be immiscible liquids like oil and water or there 

could be different thermodynamic phases like vapor liquid or solid liquid and they would 

comprise the multiphase medium.  

 

Now, whenever you have multiple phases available in the flow, there is the presence of phase 

boundary and across the phase boundary, there would be exchange of momentum and also 

possible exchange of mass and energy. So, there is the issue of interface coupling which has 

to be taken care of. So, that these exchanges of mass momentum energy can take place 

through the interfaces.  

 

Now, how do the phases interact? There could be possibilities of continuous-continuous 

phase interaction in which case you will have discrete interface separating the phases and 



very often this could be a single surface without any kind of breaks or discontinuities. And if 

you have one of the phases in a dispersed manner, within another phase, which is essentially 

continuous.  

 

Then you have the case of dispersed continuous phase interaction where if you look at this 

figure, you would get an idea of what we are trying to mean by dispersed continuous phase 

interaction because you can see that the bluish color region is indicated as continuous phase. 

Let us say it is liquid and in that liquid we have suspended particles which could be solid or 

they could be droplets of another liquids.  

 

In that case, the two liquids are invisible or they may even be bubbles, which are essentially 

gas particles, if you call it that way. And in that case, you have the presence of a dispersed 

phase in a distributed manner in a continuous phase. And if you have that you can also 

understand that the interface in this case would be a collection of interfaces with one interface 

per entity of the dispersed phase.  

 

That means if you consider any one of these particles, then there is an interface between that 

particle and the continuous phase. And then if you move on to another particle, then there 

would be a new interface between that particle and the continuous phase and so on. And these 

dispersed phase particles can vary widely in size. For example, if you have bubbles immersed 

in a liquid, you will have a wide range of sizes most often.  

 

There could be much bigger bubbles, there could be much smaller bubbles and there could be 

again bubbles which are at an average size. So, the dispersed phase depending on what kind 

of phase it is, it can of course, translate and it can also deform and as we already said that 

there could be a wide range of sizes or distribution of sizes, which is possible.  

 

So, when you look at it from CFD perspective, if you are trying to discretize your domain and 

trying to capture dispersed phase within a continuous phase, then it becomes a challenging 

problem because you have to have a discretization of the domain done in such a manner that 

you can capture the smallest phases by deploying a few grid points across the smallest 

particles.  

 



And at the same time, you should ensure that in the process, you can also capture a large 

number of particles in the domain. So, that on an average you can solve the flow with enough 

number of entities of the dispersed phase immersed in the continuous phase. So, that you can 

bring out meaningful averages out of the simulation. So, if you have to deploy a reasonable 

number of grid points to capture the smallest particles, then you will find obviously that the 

grid numbers across each direction will become enormously large.  

 

And therefore, it becomes computationally very expensive. So, from a CFD perspective, the 

computational expense is certainly linked with what kind of ranges of sizes you are trying to 

look at. And, of course, these interfaces are unsteady that means they are going to move with 

time, they could also deform this time. And we will talk more about governing equations, 

which address the distribution of these phases and how we can handle the conditions at the 

boundaries a little later in later slides.  

 

Come to the bottom line of this slide, we find that these flows are of great interest in both 

natural and industrial applications, starting from rain formation to breaking waves, which you 

find in the ocean coast spray optimization, which could have a large number of applications 

including say combustion and bubblly flows through pipes and so on.  

(Refer Slide Time: 06:54) 

 

Let us look at a few instances of dispersed continuous phase interactions. So, in this figure (a) 

as you can see spray and you have a high speed liquid jet emerging out of a nozzle and then 

there could be rapid changes in the local pressure in the shear layer of the liquid jet and this 



would often lead to formation of small vapor filled cavities in the edge of the jet and the 

formation of cavitation bubbles.  

 

So, you have continuous liquid phase in the form of the jet and you have the formation of 

bubbles which exist in a dispersed manner in the periphery of the jet. So, this is an instance of 

dispersed continuous phase interaction and other instance is given in the figure (b) where you 

find that there are particles moving through a pipeline, which are essentially carried by the 

bulk flow of the fluid, the particles are indicated by the yellow spots.  

 

So, they are essentially the sediments which are transported through the bulk fluid motion. 

So, you have a dispersed particles in a continuous liquid and then you can have instances of 

continuous-continuous phase interaction, one instant is a free surface flow. So, if you imagine 

that you are looking at the waves formed in on a river surface, then they may often look like 

this.  

 

So, you have air above and you have water at the bottom and very often, you have two 

continuous media interacting with each other. Other as long as the interface remains intact, it 

does not become discontinuous. And then, you can consider these two media as two different 

continuous phases.  

(Refer Slide Time: 08:54) 

 

We move on to look at the different challenges which are involved in interface capturing 

methods in CFD for two phase or in general multiphase flows. And if you look at the 

challenges, they are as follows. So, you have to enforce mass momentum and energy 



conservation. And as we said that very often we have to enforce these exchanges at the 

interfaces or through the interfaces.  

 

 We have to model discontinuities in properties across the interface because you are handling 

different phases and therefore, you can very well understand that there would be jumps in the 

properties of the respective fluids in terms of say density, viscosity, could be thermal 

conductivity, specific heat and so on. So, we have to model the discontinuities in the 

properties of the fluids across the interface.  

 

And then, as you saw earlier that you may often have to handle complex topologies in the 

sense that if you have especially a dispersed phase immersed in a continuous phase, then you 

have large number of entities of the dispersed phase. And therefore topologically the problem 

becomes more difficult. You have to handle each of the entities and its boundaries often in a 

three dimensional sense and that is certainly a complicated issue.  

 

And then there could be wide separation of scales, which can be better explained through the 

diagram that we have here. So, this is a diagram indicating the ocean waves in close 

proximity to  the coast line. So, the coast line is somewhere here and the ocean gets deeper in 

this region. So, as the waves approach the coast line, you can find that waves in this region 

are more on a macro scale in the sense that you know there are larger lens scales associated 

with these waves.  

 

The wavelengths are larger. Amplitudes could be larger, but, even then, you know, it is a 

continuous-continuous two phases which are interacting with each other. So, we have 

existence of macro scales here, while the moment the waves come closer to the coast line, 

there is a tendency of the waves to break. So, due to wave breaking, we have formation of or 

ejection of droplets in the wave braking zone and that can lead to micro scale formation.  

 

So, if you zoom close into that region, what it looks like is you know structures of this kind 

and there are droplets emerging in that region and therefore, you have very, very small length 

scales to cover. So, these are small scales, which you have to cover and they are much 

smaller than the scales we talked about in this region, which are the essentially the macro 

scales.  

 



Now, computationally this problem will become very difficult to tackle because of the so 

called separation of scales, there is a wide difference in terms of the lens which are 

concerned. So, on one hand you have to probe deep into the smallest structures. So, that you 

can capture the droplet breakup and things like that. On the other hand, you have to cater to 

the much larger length scales over which the bigger waves are operating, without which you 

will not be able to capture their effects.  

 

And of course, the entire picture has to be captured simultaneously. So, that we can capture 

the physics in general. So, that makes the problem computationally enormously complicated. 

And additionally, as you can understand that in regions where you have formation of smaller 

structures, the mesh, the grid, in whatever way you deploy it also has to be reasonably fine 

with a coarse grid.  

 

You will not be able to capture these structures, because they will automatically get filtered 

out, because the grid scales are much larger than the actual length scale which the physics 

dictates. So, that way the computation becomes very difficult both topologically as well as 

because of the wide separation of scales. And very often these governing equations or 

boundary conditions, which you have to enforce at the interfaces can give rise to stiff system 

of partial differential equation.  

 

And therefore, the numerical solver which has to be used in that case has to be robust enough 

to simulate realistic flows involving such phase interactions. And then you also have to take 

care that the surface tension forces which are existing at the interfaces are also represented or 

modeled accurately enough. So, that the physics is well captured.  

(Refer Slide Time: 14:10) 



 

If we look briefly at the fluid mechanics with interfaces,  in this slide we would like to outline 

the basic strategy that we first derive the equations for flows without interfaces, which are the 

general governing equations which we are familiar with and they can be derived in a 

relatively standard manner making all the basic assumptions and approximations. And also in 

forms which are applicable either in differential or integral form.  

 

And then, later, the mathematical representation of a moving or evolving interface and the 

appropriate jump conditions need to be coupled with the equations across the interfaces. So, 

once you appropriately accounted for these conditions at the interface then the same sort of 

governing equations can be made usable for a multiphase problem.  

 

And then we would talk later more about a so called one fluid approach, which will be mostly 

discussed in the upcoming lectures in this course, where the interface is introduced as a 

singular distribution in equations are written for the whole flow field. So, wherever these 

singular distributions become active, then automatically the interface is accordingly 

simulated when the computations occur.  

 

So, it is essentially a single fluid, but with different fluid properties in different regions 

incorporated across the interface and the interface definition or location is introduced through 

a similar distribution, which is  going to be discussed later and it is forced through a certain 

source term in the momentum equations. The general principles involved in fluid mechanics 

with interfaces are as follows.  

 



So, the derivation of the governing equations for multiphase flows are based on 3 general 

assumptions, one is the usual continuum hypothesis, which is applicable for the Navier 

Stokes equations and Euler equations, then we incorporate the hypothesis of sharp interfaces 

and then we neglect intramolecular forces. So, these are the basic issues which we take care 

of when we derive the governing equations and we apply to multiphase flows.  

(Refer Slide Time: 16:52) 

 

We are looking back once again at the picture that we use to talk about separation of scales 

earlier. So, we have discussed that to some extent already, so, let us look at the other issues 

that we indicated in the last slide beginning with the concept of continuum. So, we all recall 

that macroscopic properties that we see when we are talking about a fluid dynamics 

problema, could be velocity, could be density, could be temperature.  

 

 So, though we in general handle the (()) (17:30) all in a macroscopic sense, but their root 

cause lies in  moments at an atomic or molecular level. However, the continuous nature of the 

medium gets lost when we probe so, deep into small length scales. So, that we can see the 

atomic or molecular movements and therefore, using the average properties becomes 

difficult.  

 

We have to track individual particles or atoms and apply the necessary physics at that level. 

And we usually take that approach in say molecular dynamic simulations, but, when we try to 

deal with average properties, we deal with the medium as a continuous medium, and then 

essentially we go to much larger lens scales, then say the mean free paths which are involved 

for the medium.  



 

So, if you are operating at atomic scales, then typically you are going to be at a very, very 

small control volume, which is indicated by the delta V region. And then you will find that 

the properties very widely vary and are a function of both space and time, because, if you are 

putting some kind of a probe into such a small region, then the probe will randomly 

encounter moleculer collisions and therefore, there would be spikes in whatever property it is 

recording.  

 

And therefore, you will have a nature of this kind, but as you move to larger length scales, 

then mean free paths, the medium tends to behave like a continuous medium, and then you 

are starting to operate over continuum and then over a certain moderate range of scales, you 

can see that the properties essentially remain constant. But if you move to still larger land 

scapes, then there could be non uniformities which can show up further.  

 

So, this is essentially the purview of continuum hypothesis. And then, as far as multiphase is 

concerned, so, when we talk about the mixture properties of different phases, they are treated 

on an average basis which stems out of the continuum hypothesis. And this concept would be 

applicable to all the phases that we tackle. As far as intramolecular forces are concerned.  

 

So, forces such as Van der Waals forces are modeled by retaining them most important effect 

that is capillarity. And this effect, which is also called a surface tension amounts to a 

concentration of stress at these sharp interfaces and there are different means by which they 

could be implemented, either they could be implemented in the form of jumps in the stresses 

or they can be approximated as a continuous variation over a small length scale.  

 

And that would define how you change your work from the stress distribution of one phase to 

the other. And then just a recapitulation of the hypothesis of sharp interfaces which we 

discussed already in a previous slide, it is the separation of the pair of fluids with different 

thermodynamic phases such as say solid and liquid or vapor and liquid and properties 

generally change across the interface and the interface can involve wide separation of scales. 

And the example that we gave was very small droplets here, very large waves here and so on.  

(Refer Slide Time: 21:20) 



 

Now, we come to the recapitulation of the basic governing equations of fluid flow involved in 

multiphase problems. So, in the corner we have a small diagram, where we are talking about 

a small control volume as you can see the control volume has a surface and there could be a 

small elemental region of that surface indicated by ds and there is an outward pointing 

normal from that a elemental surface area.  

 

And the volume that is enclosed by that surface is given by v. And, in general, we would 

assume that there is a velocity field which is a function of both space and time, which is 

moving through this region and we would assume that this region is fixed in space. So, that is 

typically what we do in Eulerian approach. And we try to monitor the flux of different 

quantities across the boundary of such a control volumen.  

 

So, that we can develop the respective conservation equations which involve mass 

momentum and energy. So, if you look at mass conservation for instance, you will find that if 

you integrate the effect of mass flux and possible existence of mass sources and things in the 

control volume, then you will be able to come up with the first form which you have over 

here.  

 

So, that talks about the time rate of change of mass which is within that control volume and 

then the right hand side of the equation talks about the mass flux across the surface. So, when 

the sum of the two effects is equal to 0, you have the in-flux of mass balanced exactly by the 

out-flux of mass. That means there is no mass stored within the control volume as such.  

 



And mast in general, this should be true for elemental mast control volume like the one we 

have tried showing inside this finite control volume, which is infinite similar in extent, and 

then out of this integral form of the equation emerges the differential form which is true for 

the smallest of elements. And therefore, it involves the derivative based expression. Again, 

by applying the concept of material or substantial derivative, we can also show that the same 

equation can be represented in terms of the material or substantial derivative of density.  

 

So, that is broadly the idea of the mass conservation equation which we have of course, 

learned in a basic fluid mechanics courses, but we are just recapitulating the ideas once more. 

And then comes the concept of momentum conservation, where we find again applicable for 

that small elemental control volume we have found the indication on the left hand side is the 

rate of change of momentum in the fixed volume v.  

 

And then on the right hand side, we have different terms, we can indicate the first right hand 

side term as so, this is the momentum flux to the boundary of the volume and then the second 

term is the total body force. Very often if we have gravitational force applicable for heavier 

fluids, we would indicate it through the body force term. And then comes the total surface 

force term.  

 

And that of course, involves the symmetrix stress tensor and that dot product essentially 

indicates the force on the surface element ds. So, we have that small elemental surface on that 

element what is the surface force acting and we can show that the stress tensor for Newtonian 

fluids will be indicated as minus p plus lambda times divergence of u times and unit stress 

tensor I plus 2 Mu S where S is the rate of strain or deformation tensor.  
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So, I is unit tensor and S is rate of stream or deformation tensor and into it you can show that 

this stress tensor S is given by this and of course, as you can understand these are all tensors 

because Nabla operates on the u vector and if you look at the elements of the stress tensor, 

you will find that they work out to be and if you recall in the stressed.  So, this is our rate of 

strain or deformations tensor which was part of the stress tensor T.  

 

And remember that because we are handling a Newtonian fluid, we have stress is 

proportional to rate of strain and based on that the strain tensor T has this expression and here 

lambda is second coefficient of viscosity and from Stokes hypothesis, we know that lambda 

is equal to - 2/3 Mu. So, we have made a number of approximations or assumptions rather to 

finally, express the momentum equation in a form like this.  

 

And this is the well known Navier Stokes equations. So, these are the details essentially 

which we need to keep in mind. So, that we can fill in the gaps. And so, remember that 

starting from the Cauchy is equation of motion, which is applicable for continuous médium. 

You can very easily show how it translates to the Navier stokes equations through the 

assumptions that we imposed.  

 

And we showed the form of the Navier stokes equations. We will proceed with the remaining 

issues of interface tracking techniques for multiphase flow in the next lecture. Thank you. 


