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We continue our discussion on one dimensional Euler equations in this lecture. So, last time 

we had started discussing regarding this initial velocity distribution, and we had discussed as 

to how the initial characteristics would look like and remember that if this is the velocity 

distribution we have initially and we are solving the inviscid Burgers equation.  

 

Then point to point these differences in velocities would have an influence on each other 

because this velocity distribution will not get translated at the same wave speed a like it 

happens in linear wave equation. But rather here they can interact with each other in inviscid 

Burgers equation and then there could be situations where they get close enough to each other 

generating compression actions.  

 

When they move apart from each other, there could be expansion actions. Now, just to 

recollect very quickly that larger positive velocities are more slanted towards the right like we 

see over here. Smaller positive velocities are mainly tilted towards the right, while negative 



velocities are tilted towards the left; because this comes entirely from slope information. 

Because dx dt is equal to u.  

 

So, depending on what the value and sin of u is accordingly dx dt gets defined and therefore 

that straight line gets defined. So, with that in mind remember that these lines whatever we 

have drawn, they are true ideally only a t = 0. Now, as time emerges, we have to figure out 

whether we can continue drawing these lines as straight lines which are independent of each 

other or they are going to get sufficiently close and start interacting with each other.  

 

And whether characteristic lines can cross each other or not such issues have to come into 

picture, because you can clearly anticipate that these lines are going to distinctly get closer to 

each other as time progresses and then can they really intersect and cross over. Now, before 

answering all those issues, let us look at the concept of wave steepening what we have 

written at the bottom of the slide.  

 

So, in the case of linear advection equation in which characteristic speed is constant, it is a. 

The initial distribution would translate with speed a without distortion. So, it will just get 

translated. However, in the non-linear case of inviscid Burgers equation, characteristic speed 

is u and it is a function of the solution itself. So, distortions are therefore, produced in the 

moving wave front leading to steepening of waveform whenever faster characteristics 

approach this lower ones and this is precisely what is happening here.  

 

A foster characteristic may approach the slower ones here. That means they are going to get 

closer to each other and interact. So, this is a distinguishing feature of non-linear problems 

and this is essentially the mechanism with which non-linear waveforms are generated.  
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Another important property which we will have a quick look at which must be in short 

regarding the flux function f u. So, the behavior of the flux function f u it has an influence; a 

very strong influence on the behavior of the solution itself. The crucial properties 

monotonicity of the characteristic speak lambda and lambda u is a monotonically increasing 

function of u.  

 

When if you take a derivative of lambda with respect to u, it should be greater than 0 then it 

is monotonically increasing. If that is the case, then the flux f is defined to be a convex flux. 

Now, what happens in the case of convex flux we will discuss later in this yellow highlighted 

portion later. Now, let us try to find out that do we really have a convex flux in the case of 

inviscid Burgers equation. So, here lambda is equal to u.  

 

So, if you take a lambda dash, it will give you one which is greater than 0. That means the 

flux is convex. What happens for a convex flux? That is what is of interest to us. So, in a 

convex flux situation for a rarefaction wave. If you have larger values of the initial velocity, 

they propagate faster than lower values and thus the wave would spread and flatten as time 

evolves.  

 

So, this would happen if the leading waves are moving faster than the trailing waves. So, the 

gap between the leading and the trailing waves keep increasing with time. The faster ones 

continue to move faster; slower ones continue to remain slow. This is what happens in a 

convex flux situation. And therefore, you have a fanning out of the flow or an expansion fan 

developing there.  



 

Just the converse happens, if it is that the characteristics are moving closer to each other. So, 

for the same reason wave steepening would happen for a compressive wave situation; 

because larger values of u which are defined from initial condition would propagate faster 

than the lower values. And thus the wave steepens as time evolves. Now, this would happen 

if the leading waves are moving slower than the trailing waves.  

 

So, the trailing waves would catch up with them leading waves leading to merging of waves 

compression effect and therefore, development of shocks. So, in the convex waves, flux 

situation, we have a slower wave continue to moving slower; a faster wave continue to move 

fast and therefore, these kind of interactions are possible.  
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Let us try to look at a few numerical results. So, here we see non-linear advection of a step 

discontinuity. Now, we have also looked at step discontinuity being advected with linear 

advection equation. Remember that that was introduced as an initial condition there and it 

continued to move with the wave speed a whatever we defined. Now, incidentally in this 

case, where the equation is like this or this term can be written as the flux term.  

 

You have no definition of a. So, at what speed will the front move that is a question in itself. 

Now, the equation decides on its own at what speed the front will move, it emerges as a part 

of the solution. This is something that we have to realize, because you are not defining at 

what speed that discontinuity will have to move and neither can you define it because the 

moment you define it, then it becomes linear advection.  



 

Here, it is inherently non-linear advection. And the fact that you have a sharp discontinuity 

means as though there is a moving shock already introduced into the domain. Now, the point 

is that if the shock movement is governed by this equation, then the equation decides for 

itself that at what speed it will move. Incidentally, we will see slightly later that it moves with 

the speed of the discontinuity, which is an average of what you have in the left state and what 

you have in the right state.  

 

And this condition essentially comes from the Rankine-Hugoniot conditions. So, you have a 

left state where u is equal to 1; a right state where you is equal to 0 as though a shock is 

moving into a stagnant region, such situations we will see even in the shock tube later, and 

then at what speed will this discontinuity move that is given by this relation; the shock speed 

relation.  

 

And what we have done is we have tried to simulate this situation using the Lax Wendroff 

scheme. Now, because the Lax Wendroff has the dispersion issues; you of course, have 

wiggle formation over here and so on. But you can see that the wave front is moving as time 

elapses.  
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Let us look at a few more examples. So, here on the left you have an initial waveform which 

looks like this. Now, u is plotted along the y axis that means you have value of u = 1 at x = 0 

and then it drops to 0 at x = 1 that means u uniformly reduces or linearly reduces to a value of 



0 over a unit length. Now, if you allow this as an initial waveform, then allow the Burgers 

equation to solve this problem.  

 

It leads to a sharp wave front like this again with the oscillation here because Lax Wendroff 

has been used. But if you ignore that part, you can see a sharp wave front. Why is it 

happening? As we said that if you look at this problem from the point of characteristics, then 

in the characteristic space, how can you define it at t = 0, you have vertical characteristics 

here.  

 

And you have sloping characteristics like this here, and in between the slope increases in the 

y direction. Why do you have it this way? Because dx dt is equal to u along each 

characteristic. Right. So, with passage of time this characteristic does not see any change, 

because it is stagnant. They are all characteristics beyond that also are vertical, because it is 

stagnant here.  

 

But, the one that you have over here at x = 0 is moving with u = 1. So, you will actually have 

a 45 degree inclination here because dx dt is equal to 1. So, that gives you m = 1 and 

therefore, the slope is the theta is 45 degrees. Right. What will be the intermediate 

characteristic slopes? They will vary gradually and the slope will start approximating towards 

this vertical line as you approach the end up.  

 

That is the distribution of the characteristics at the beginning at t = 0. So, you clearly see that 

the characteristics are converging and will show soon that they cannot intersect with each 

other, but they can merge into a shockwave and that is what you see as a shock front over 

here. So, that is how the whole thing evolves, because you are allowing these characteristics 

to non-linearly interact.  

 

The packet will not get translated as it is with a constant speed without the distortion like it 

happened in linear advection equation. They will interact and therefore, there will be non-

linear waves generated. So, this is the basic lesson we are taking trying to take from inviscid 

Burgers equation which will be very helpful when we try to handle Euler equation because 

Euler equation also has these behaviors inherent.  

 



On the contrary, if you have a distribute velocity distribution of this kind, you find that there 

are no discontinuities generated rather there is a smooth variation which continues to move 

towards the right. Now, if you look carefully at this initial waveform on the right picture, you 

have, we are calling this as a rightward ramp, while the previous problem we said it is a 

leftward ramp.  

 

So, in a rightward ramp what is happening is that you have zero velocities here and you have 

u = 1 here onwards towards the right. That means the velocity in this intermediate range has 

changed from 0 to 1. Right. So, u has increased with positive change in x in this region. So, 

what does that mean? In the characteristic space, if you look at it as the initial distribution, so, 

here the line is vertical because dx dt is equal to 0.  

 

Here the line is again at 45 like we saw in the previous problem at x = 0, it was 45; here at x 

= 1, it is 45 and what will happen to the intermediate lines? They will start behaving like this. 

This is a picture at t = 0 essentially. Now, the interesting thing is at no point these 

characteristics will come close to each other because they are getting further and further apart 

as time grows.  

 

And therefore, there is no possibility of compression wave generated out of this. Rather there 

would be an expansion fan generated out of this and that is why you find widening of the 

field as time progresses and so, now, at a later time you are finding the fan has expanded up 

to this extent. It has become wider, which is shown in the bracketed region. So, this is how 

the things are working.  
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So, we just try to add some more detail here. So, if you look at a compressive wave like this 

as a sharp discontinuity. This is the u distribution and let us call this as x = 0 . So, what we 

have done is that u at x 0. So, this is t = 0 essentially is equal to u R if x is less than 0. Sorry. 

It should be u l and this is u R if x greater than 0 and the discontinuous solution for this initial 

value problem.  

 

So, these are initial values that you have imposed. So, this is an initial value problem with 

discontinuity and if you impose such discontinuities we often say this is a Riemann problem. 

So, the discontinuous solution of this initial value problem is given by u x t equal u L if x - S 

t is less than 0; is u R if x - S t is greater than 0. What is this S? S is the speed of the 

discontinuity which we were referring as shock speed a few slides back.  

 

And it is defined as u L plus u R by 2. As I mentioned earlier, it should be possible for you to 

show it through Rankine-Hugoniot equations and this discontinuous solution of course, is a 

shockwave and you need to satisfy an entropy condition across the shockwave that u L is 

greater than S is greater than u R. So, this is called as the entropy condition. Solution must 

not violate this entropy condition. If it does, then the solution will become unstable.  

 

And as you can understand these are the characteristic speeds in the respective domains and 

how do the characteristics interact? That is the interesting part of the story which we need to 

figure out.  
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So, at t = 0 if you try to look at the problem, so, this is x = 0. So, the characteristics on the 

right are moving slow. So, they were looking like this. While the characteristics on the left 

where moving fast, so, they were looking like this. And now, not sure whether they will 

intersect or not. Actually, they cannot because then there is entropy violation. We are not 

going into details of this but from a thermodynamic perspective, if we analyze the problem.  

 

And we can show that the characteristics would finally engage in this form that right from t =  

0. A front will develop which we are calling as the discontinuity and this will move with 

speed S and the characteristics on two sides of the front as if get lost. In the front as the meet 

the front they cannot cross the front. So, the front as the acts like a black hole for all the 

characteristics which meets the front.  

 

So, we now figure out that these are the characteristics coming from u L; these are the 

characteristics which are coming from u R and merge at the discontinuity and the 

discontinuity moves with speed S. So, this is how a compressive front works. What happens 

in an expensive case?  
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And in an expensive wave, let us try to first define the problem. So, you have a left state; you 

have a right state. Let us say this is x = 0 and this is essentially that u x at t = 0. This is the 

initial condition. Now, one can say that there could be a possibility like this where you have a 

so called rarefaction shock, just like we had a compression shock. we have a rarefaction 

shock from which the characteristics as they emerge as we move in time.  

 

So, this is say that x t space. So, as you can understand these are the slower waves, these are 

the faster waves and beyond t = 0 as the rarefaction shock is emerging. But, as we said earlier 

that this condition where the shock absorbs all the characteristics that has to be kept in mind, 

but here we are seeing emergence of characteristics from the shock which again violates 

entropy condition.  

 

And therefore, this is not a possibility which nature accommodates. Rather what nature 

accommodates looks something like this. You have the faster waves; you have the slower 

waves. And then to have an expansion fan generated in between. So, this is the extent of the 

slower waves; extend of the faster waves. And then in between there is a region which is 

defined by the limiting characteristics minded that these are not discontinuities.  

 

These are the limiting characteristics and within those limiting characteristics you have an 

expansion fan, we call this as the tail of the wave. We call this as the head of the wave. So, 

what you have in between is an expansion fan. So, this is how an expansive wave would 

behave with again a discontinuity in initial condition. So, this is a centered wave. You could 



also have non-centered waves where you could have a region over which the velocity change 

occurs, like we have shown one of those cases in the numerical simulation.  
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I will make a quick plot for you to explain that situation. So, you may actually have a 

situation like this as an initial condition. You have a u R here. You have a u L and a linear 

variation in between. So, let us say it crosses over, over here at x = 0 and this is what you 

have as an initial condition. Then you can show that in the S t space. This is where the 

characteristic will be vertical.  

 

And then in this region the characteristics will be slanted with the slope defined by u R. And 

then this is a region where they will be sloping with u L constant slopes and the region in 

between will have a variation to match these two limits. That means the tail on one hand and 

the head on the other. So, this is how the intermediate characteristics will behave. Of course, 

remember that this is a t = 0 but then it will expand fan.  

 

And they will not come close to each other. So, it will fan out. So, this is a non-centered 

expansion fan. So, these are very important concepts which one need to keep in mind when 

we discussed about numerical calculations and their implications and we will get a much 

deeper insight to analyze the results if we are aware of the physics which is working in the 

background.  
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And the physics is distinctly different between the linear and the non-linear advection case. 

That is what we are trying to establish through our results. We have discussed about TVD 

schemes in our last lecture on one dimensional advection diffusion equations. So, there we 

said that schemes which maintain monotonicity do not allow occurrence of fresh overshoots 

and undershoots in the solution.  

 

So, that comes in very handy when you try to handle discontinuities in initial conditions and 

that too when you are solving non-linear equations like inviscid Burgers equation. So, here 

you find that unlike what you saw for Lax Wendroff, there are no longer wiggles or 

oscillations found at the corner when you are advocating the sharp discontinuity. So, that is 

by virtue of the TVD nature of the solution.  

 

We are not going into the details of the algorithm, but nevertheless the solution proves that 

the TVD scheme is very useful in this instance.  
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Again, we are showing another one or two interesting examples using the one dimensional 

Burgers equation where we have an initial waveform of a sinusoidal nature like this and with 

the advection, it finally develops discontinuities. So, as you can understand this part of the 

wave has positive velocity; this part of the wave has negative velocity and the larger 

velocities are somewhere in the middle, which tend to make the characteristics move towards 

the right.  

 

And then there are characteristics moving towards the left from the negative velocity region. 

And they try to, you know kind of collide with each other. Thereby leading to a sharp 

discontinuity in between, which essentially remain stagnant. It cannot move anyway. Because 

it is being barraged by characteristics from both ends. While here, you have a situation where 

you have positive velocity here; negative velocity here.  

 

And positive velocity moves towards the right; this towards the left, but then the maximum is 

somewhere in the middle. So, those characteristics would catch up with the slower ones 

towards the right and therefore leading to a sharp discontinuity. While the ones which are left 

behind, move slower, therefore, there is a kind of expansive nature here. So, there is a 

discontinuity. There is an expansive nature, hand in hand.  

 

Same thing happens to the negative velocity region where the feature moves towards the left 

again with a shock and an expansion. So these are very interesting test cases where with the 

concept of characteristics now, hopefully, you should be in a better position to analyze the 

situation.  
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And then we just spend a minute to have an appearance of the one day Euler equations before 

we close this lecture. So I am just going to harp on only one point that is, in the earlier 

instances, we were all looking at equations where we were writing them in unbolted form like 

this. And you remember that you had a flux term u squared equal to 2 for inviscid Burgers 

equation or equal to  a u for linear advection equation.  

 

While now we have come to problem domain where we have multiple conservation 

equations. So these are no longer scalar conservation laws. So, we have vectors involved. So, 

both u and f are vectors, u is called the vector of conserved quantities, while the f vector 

continues to be called as a flux vector. So, we will discuss more on this in the next lecture. 

Thank you. 


