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Lecture - 36
Numerical Solution of One Dimensional Convection-Diffusion Equation (continued)

Let us continue with discussion of the one dimensional convection diffusion equation. 
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So, last  time we saw a result  for the central  differencing scheme with two values at  the 

boundaries. So, the left boundary had a value of 1, the right boundary had a value of 0. And 

then the flow was moving from the left to the right, and then we try to see for different Peclet  

numbers,  how  the  phi  distribution  look  like  in  the  domain.  That  means,  how  was  phi 

transported in the domain. So, we relook at another result. 

And here if you notice carefully that the boundary values have been just swapped. So, on the 

left end now you have a value of 0 on the right end you have a value of 1, and therefore as 

you can understand there is that as advection becomes stronger. There will  be a stronger 

sweep of the left end value towards the right. Right. So, if that is the situation for low Peclet 

number as you can see here that the blue curve is the is the only diffusion case that means no 

advection. Right. 

So,  then there would be a linear distribution of phi from the left  to the right end. Right.  

However, the moment there is an advection effect. You have a sweep down of the curve. 



Why is it? Because the left end value the phi A is equal to 0. So, what it would try to do is 

keep the value of phi closer to 0 as the advection becomes stronger. So, as u becomes larger, 

you will see the trend would be that the curves will start looking like this. 

That  means there is a stronger and stronger sweep of the phi A value towards the right as 

advection becomes stronger. Alright.
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So, here you have a case of u = 0.05 meters per second. Here, it  is like .625 meters per 

second, like we had done for the previous example.  And moment  you exceed the Peclet 

number of 2.5, you see an oscillation again. And then with the same number of nodes if you  

push it to 5 again there are similar oscillations. And the problem is resolved by putting in 

more number of nodes. 

The only difference between this case, and the previous case is, how you have swept the 

boundary values, and what effect it has on the curve, the nature of the phi distribution. In one 

case, it was moving up upwards from the perfect diffusion case. In another case that means in 

this case, it is moving downwards from the perfect diffusion case. So, this is the difference 

we need to note. 
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Last time we had talked about the Scarborough criterion, which is the sufficient condition for 

a convergent iterative method for solving a system of equations. So, we again revisit this in 

the form of few important bullet points here. So, we have done the calculations earlier we 

already have the knowledge of this condition which was checked. And we notice that if the 

criteria  is  satisfied  what  it  does  is  that  the  resulting  matrix  of  coefficients  is  diagonally 

dominant. 

That is the condition that it ends up producing. And that is ensured when you have large 

values of net coefficient a P, and that is possible only when you have S P, having very large 

negative values. And of course, when it is diagonally dominant,  it  remains bounded. The 

boundedness criterion is satisfied. And if you do not have sources in the internal regions of 

the flow, then it also means that the internal modal values of phi should remain bounded by 

boundary values. 

That means they cannot ever exceed the boundary values cannot become larger or smaller 

than the boundary values, and all the coefficients of the discretized equations should have the 

same sign, preferably positive. And if these conditions are ensured then you will always have 

oscillation free solution. That means a bounded solution. However, if you are not able to 

satisfy this condition, then what happens is you end up producing wiggles, which is typically 

the signature of numerical instability. 

And wiggles are essentially undershoots and overshoots beyond the expected value of the 

analytical solution. So, these are the important points which we would like to recapitulate 



again. And these are very important because the boundedness nature of the solution depends 

on satisfaction of this criteria. 
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Just having a quick overview of the different properties of the central differencing scheme. 

So,  the conservativeness  is  ensured because you  have consistent  expressions.  You know, 

solving for the values at the interfaces. Why is it consistent? Because, let us say,  we will 

make a quick sketch here that is if we have a node P here and node E here, and an interface E, 

where you are trying to reconstruct because you are doing a linear interpolation. 

It will always depend on P and E, whether it is the east face of P or the west face of E. So, 

that is what is meant by consistent expression for the value of phi at the point E. Similarly, if  

you are calculating the, the derivatives, they are also found in a consistent manner because 

they just depend on phi E and phi P, and they are divided by the distance separating them, 

and that is essentially the derivative. 

Whether you are  looking at that point E as the east face of P or the west face of E. So, 

consistent expressions are used in the scheme. The scheme satisfies the boundedness criterion 

for Peclet number < 2.
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And if you violate them, then you would see wiggles, and even may remember that we saw 

similar  wiggles when we were talking about dispersion error in the context of numerical 

errors when we studied the linear advection equation, or wave equation. There we had seen 

wiggles  with  central  differencing  as  far  as  transportiveness  is  concerned.  When  we  are 

calculating  the  values  at  the  cell  interfaces,  we  are  putting  equal  weightage  on  the 

neighboring nodes. 

That  means  we  are  not  paying  attention  to  the  direction  of  transportation,  and  that  is 

essentially the reason why the solution becomes bound unbounded beyond a certain range of 

Peclet number if you do not pay attention to the flow direction. So, there is an issue with 

transportiveness of this scheme, and it has second order formula accuracy, which we have 

discussed adequately even before. 

So, these are the characteristics of the central differencing scheme. 
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Let us move on to the next numerical  scheme of interest  for us,  which is the first  order 

upwind scheme  or the donor cell scheme for advective fluxes, and we continue to use the 

central difference for diffusive fluxes. And it is rather simple to define how first order upwind 

works. That means when the velocity is from left to right. Then if you have points, the node 

points like this, and cell interfaces, like this define. 

So, at the cell interface e when the flow is moving from left to right, you would assign phi e = 

phi P that means, this information percolates, to the point e and phi W is assigned to the phi 

capital  W is assigned to small  w (()) (09:16).  So, that is how it works. Why if  the flow 

changes direction and moves from right to left,  then it just reverses. That means now the 

value of phi from the capital E node will be assigned to the face e, and the value of phi from 

capital E point will be assigned to the cell face small w. 

So, that is how the first order upwind discretization will work. So, if you try to work out the 

coefficients of the first order upwind scheme. You can certainly do it the way we did it for 

the central differencing scheme, but we will just keep a few steps and go over to the final 

expression straightaway.
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So, for internal nodes, how do we do it? We do it this way, phi P. This is your a W. This is  

your  a E. Remember,  we are treating the case of F > 0 that  means,  positive velocity or 

moving from left to right that kind of situation. So, in that set in that sense, a E is D w and  

then we will be left with F e – F w. This is equal to phi W. This is how it will work for 

internal nodes. 

For node 1 that means the left boundary node, you can show that S u will work out to be phi 

A times 2D + F, and S P is equal to minus of F + 2D. 
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And for node 5, you can show that S u is equal to 2D times phi B. While S P is equal to –2D. 

Here again, we need to mention that you know, these expressions are all identical this comes 

from continuity and D e and D w’s are not distinguished anymore. They are just treated as 



these. So, then you will get expressions of this kind for the first order upwind. Now we will 

go over to the expression for the coefficients. 

Make the table and see what happens. So, the format of the table is known to us already. We 

have done it in detail for the central differencing scheme already. And now, let us do it for the 

first order upwind. So, we continue to refer to 5 nodes. And the expressions come up like  

this. Sorry. So, what I wrote over here is essentially S P. So, we treat this as S u. So, there is a 

small mistake instead of rewriting it all over. Please take note that this is S u. 

This is S P. So, slightly swapped. a P is 3D + F 2D + F, and 3D + F here. So, we are done 

with the coefficients. We need to notice certain important things. As you can see all these 

terms are positive, which is very favorable. Again, the S P’s are all negative which is also 

very  favorable.  So,  it  seems.  The  first  order  upwind  scheme  will  have  no  issues  with 

boundedness. 

(Refer Slide Time: 13:59)

So,  we  will  go  straight  away  to  check  for  the  Case  2,  which  we  did  for  the  central 

differencing because as you can understand that Case 2 was a little more difficult case to 

handle for central differencing. Case 1 was easier. So, let us check how first order upwind 

does for the Case 2 directly. If it does well, we can be rest assured that it will do well for 

Case 1 also. So, Case 2 is the Peclet number 2.5 situation. 

And for that if you do the calculations, what do you get? Let us find out the values. So, here 

we find these values for a W, these values for a E, these values for S P and S u finally a P. 



And you can notice that if you have large values of a P, a big contribution is coming from the  

–S P. And if that happens, satisfying Scarborough’s criterion becomes that much more easier. 

So, there you can keep the, you know, summation of mod neighboured coefficient times by a 

P below 1. Right. So, let us check the Scarborough criterion. So, for node 1, what is it worked 

out to be? .5 by 2.75, which is <1. Then for nodes 2, 3, 4, what do we have? We have 1.75 + .

5 by 2.25, which is precisely 1. And then again for node 5, you have 1.75 by 2.75 which is 

<1. So, even for the Case 2 it has satisfied the Scarborough’s criterion. 

So,  you  can expect  that  there will  be no oscillations  in  the solution.  Before accepting  it 

straight away. Let us try to look at some numerical results. 
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So, here is the solution coming from first  order upwind scheme.  And precisely the same 

cases, which we treated for the central differencing scheme one by one, we can see. And here 

the left boundary value is phi A = 1, right boundary value is phi B = 0. We have not shown 

the pure diffusion solution but you can imagine that it  will be line as a straight line here 

connecting phi A and phi B. 

And we can see that the troublesome case which began with Peclet number 2.5 is indicated 

here. So, you do not have any wiggles. But the trouble with first order upwind scheme is of  

course visible  here,  the  analytical  one  lies  on top.  And the one from first  order  upwind 

scheme lies below. And clearly, there is a gap. Yeah. And why is it so? It is due to artificial 

diffusion. 

You are aware that first order upwind scheme does have a significant artificial dissipation or 

diffusion and that is what is responsible for the gap between the analytical solution and the 

numerical solution. But nevertheless, there is no wiggles, which was a major issue with the 

central differencing solution. Now, if you push it to Peclet number 5 case even there you see 

no wiggles, which was making central differencing very unbounded filled with undershoots 

and overshoots. 

Here,  on the contrary,  you find no wiggle whatsoever.  But diffusion error again remains 

there. And what happens if you try to solve it using much larger number of nodes, the 50 

nodes case. Here of course there will be no wiggles that we knew. 
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But the point is that you find that even with large number of nodes, there is a gap between the 

analytical solution, and the numerical solution, which is again due to the article diffusion. 

And the insert you see that in central differencing scheme, there was virtually no gap between 

the analytical  solution,  and the numerical  solution,  which was due to  its  superior  formal 

accuracy and essentially no diffusion. 

Now,  we  went  through  two  different  schemes  now  already  to  look  at  solutions  of one 

dimensional advection diffusion equation. So, we remember earlier, we had discussed about 

the exact solution of the  (()) (19:37) equation.  In that case,  we found that you know the 

solution comes out in the form of exponents. 

And we just recollect that solution once more. And then we are proposing whether we can 

explore a scheme where we can actually use that exponential distribution. Because that is 

expected  to  give  us  much  superior  match  with  the  exact  solution  at  least  in  the  one 

dimensional case, right. So, that is the motivation with which let us discuss a bit about a 

scheme, it is called as the exponential scheme.
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And the motivation behind the scheme is the exact solution of the one dimensional advection 

diffusion equation. And for that we will actually draw a small grid here in order to define the 

parameters  which will  be of use to  us  to  come up with a  derivation  of the  scheme.  So, 

between the nodes P and E if we use the exponential scheme, then you may remember that 

from the exact solution we can write the distribution of phi in this region in this form. 

So,  this is essentially coming from the exact solution. What we have done is use the exact 

solution in this span between P and E. Alright. So, this holds good between P and E. We can 

similarly write it between another set of (()) (21:25) nodes. Now, we recall that our governing 

equation was this, right. So, this governing equation let this be written in a more compact 

form. 

Let us call this as J where J is essentially rho u phi minus gamma d phi d x. Alright. So, this 

governing equation  is  now available  to  us  in  a  compact  form.  And if  you  integrate  this  

governing differential equation, let us say between limits e and w, which are applicable for 

the node P. Then you can write this equation in the form like this. So, J e minus J w and that 

should be equal to 0, which essentially means that J e is equal to J w, right. 
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So, we can say that  J e, which needs to be not evaluated at the point e is this. And having 

defined  the  distribution  of  phi  using  the  exponential  distribution  coming  from the  exact 

solution we can write this as. Okay we just do the calculation in the next step we have just put 

it as F e here. Now, what is phi e? Phi e will be coming from the phi distribution that we 

wrote earlier for the point e. 

That means here in the exponent x will be replaced by x e that is what makes it applicable for 

phi e. So, this is the expression for phi. And then we need to take a derivative. So, if you 

quickly do the calculation for the derivative somewhere here. Let us have a small calculation 

here. So, you do a d phi dx. And you can show that will be equal to, say, let us call it phi L. 

Rather, we call it as phi P by e to the power of P e minus 1 into P e by delta x e into e to the 

power of P e x by delta x. So, this would be the expression for d phi dx. Right now, if you use 

that for the diffusion term. What will be the calculation? Yeah. So, actually, and go back here 

and correct it. So, this should be phi E minus phi P by e to the power of P e minus 1 into P e  

by delta x e. 

And then we have e to the power of P e x e by delta x e. So, this is what we have over here. 

Now, you can see that one of the set of terms will actually get cancelled out. 

(Refer Slide Time: 25:47)



And you will be able to simplify this as F e phi P plus. So, it comes up to this and then 

finally, if you rearrange. 
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You will be able to show that J e is equal to F e times e to the power of P e phi P minus phi E 

by e to the power of P e minus 1. From that you can figure out that when you apply it to the  

west face. It could be written as e to the power of P e phi w minus phi P by e to the power of  

P e minus 1. Of course over here, we have made one assumption. As usual that gamma is 

constant and so is the grid spacing.

Therefore,  the D does not change from one big space into the other between nodes,  and 

therefore,  F anywhere  remains  constant  because of continuity requirements.  So,  the ratio 



Peclet number will remain constant. But if gamma changes from point to point or there is non 

uniformness that may lead to varying values of Peclet number that you need to keep in mind. 

If that is the case, then you have to assign some separate indices for Peclet number like P e at 

the point e or P e at the point w and so on. So, for simplicity here we have assumed it to be 

constant. Remember that J e is equal to J w from the governing equation. Therefore, once we 

set that condition and we collect all the terms together, you will get this form. Sorry. You 

have to write another expression here and then close the bracket phi P is equal to phi E e to 

the power of P e times phi W. 

So, what we find is that the coefficients of  phi P phi E or phi W they are all functions of 

exponents of the cell based Peclet number. So, P e here is the cell based Peclet number. Now, 

in  the  central  differencing  scheme  or  first  order  upwind  scheme  we  never  found  this 

happening that they are exponents of Peclet number, right. So, here it comes up because we 

have made use of the exact solution itself to be fitted into the discrete framework. 

That is why the exponential forms have come up. So, we can expect that this will function 

much more superiorly compared to the first order upwind or central differencing. But the 

problem lies elsewhere that when handling exponents numerically, it is a very cumbersome 

and costly issue. Because exponents involve very large series expressions, and therefore it 

will be extremely costly, where indices are involved. 

And therefore computational costs will become sky high if you use these kinds of schemes. 

Therefore, due to the expense of this scheme, we cannot use the scheme, per se. Instead of 

that we will discuss about some reduced order forms or simplified forms of this exponential 

scheme in the next lecture. Thank you. 


