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Numerical Solution of One Dimensional Convection - Diffusion Equation (continued)

We continue our discussion on one dimensional convection diffusion equation.
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Let us look at the transport equation for property phi which involves the advection term on 

the  left  hand side  and  the  diffusion  term on the  right  hand side.  Now,  let  us  recall  the 

definition advection is the transport of the scalar property phi due to fluid movement. And 

when we say convection, convection has a slightly broader meaning it in the context of heat 

would mean that there will be convection of heat from a surface involves conduction at the 

surface where the fluid is stagnant because of the boundary layer effect.

And there will be advection beyond that region which is stagnant or sticking to the surface 

where the fluid is moving. So, advection becomes active in the layers where fluid movement 

takes place. So, we are primarily going to concentrate on advection. At this point, we are not 

attempting to solve for the velocity field because that is a more involved problem, which we 

will see in the later part of the course.

At this point, we are assuming that the flow velocity u is known to us; it is provided to us in 

an ad hoc manner. And having said that the velocity should of course, always satisfy the mass 



conservation equation or the Continuity Equation which is given by the second equation. So, 

the first equation involves the advection diffusion of property phi and the second equation 

involves the mass conservation and therefore, involves the velocity field u and the density 

rho.

So, if we now look at a control volume surrounding the node P, then we can see its features 

over here. So, it has a east face it has a west face and the node P is usually defined at the  

center of the control volume and it has a certain width delta x small w e. Now, if we want to 

define other distances, let us say from node P to face e or node P to the face w etc., this is 

how the distances could be specified.

Again, there will be neighboring nodes like we have over here. Then node which is to the east 

would be generally marked as capital E to the west would be marked as capital W and so on. 

So, this is a typical schematic of a one dimensional finite volume. And you may recall that 

we decided to take the approach of finite volume to integrate the equations and proceed with 

the solution.

So, let us see how we can proceed with this definition of control volume and the governing 

equations, how they would work out in this framework.
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So, for that we will go to the next slide. And in the next slide, what you see is that we have 

further mark that the velocities exist and the velocities could be defined at the interfaces like 

we have marked over here. So, u with a suffix e corresponding to that interface, small e and u 



with a suffix w corresponding to the interface w. And now, if we look at integrating the 

equation, then this is how it works out.

So, if you integrate the advection term it yields the term rho u capital A times phi at the east 

face minus the rho u A phi at the west face. So, this is essentially the advection flux which we 

have  on  the  left  hand  side  and what  you  have  on  the  right  hand side  is  essentially  the  

diffusion flux or the diffusive flux. So, these are the terms we have on the two sides of the 

equation.

And then if we look at the integration of one dimensional continuity equation, this is how it 

works out. So, the product rho u A if you take a difference between the east and the west face 

that should equate to 0 which essentially means that the product rho times u will remain 

constant provided that the areas are identical.  So, the kind of control volume that we are 

looking at, we do not have a variation of area as we move along the x direction.

And therefore, A suffix e = A suffix w and therefore, it boils down to this equation 4.4b 

where the (()) (05:25) term goes out of the equation.
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Now, let us look at the diffusive part. So, gamma is the diffusion coefficient and we can work 

out  and  arithmetic  average  to  define  gamma  at  the  interfaces  W  and  E  based  on  the 

neighboring cell center values. So, that holds good for a uniform grid. However, if you have a 

non uniform grid, then you would have to have suitable weightages to multiply the cell center 



values and then again divided by the distance separating the cell centers, which we have to 

invoke for obtaining the interface values.

So, uniform and non uniform grid calculations would vary based on whether we have to have 

these weightages in place or the weightages very simple, it is just point 5. So, that is the 

calculation of gamma part. And then we have to finally approximate the diffusive flux for 

which the derivative comes into picture. So, you see equation 6a and 6b where the derivative 

calculations are shown.

And we can see that the CD2 approximation has been used for calculating the derivatives. So, 

that is again based on the neighboring nodes and the neighboring nodal values for calculating 

the derivatives at the respective interfaces.
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So, now, let us define the fluxes F and D. So, we will call F and D to represent the advective 

mass flux per unit area and the diffusion conductance at the cell faces. So, we can define F as  

the product of rho and u and D as the ratio of gamma and delta x. So, you can check easily  

that both of them will yield the same kind of dimensions. And then you define the advective 

fluxes at the interfaces e and w with F w F e.

And then similarly, the diffusive flux conductances at the same interfaces with the formulae 8 

and 9. And then you finally substitute them in the integrated transport equation, which looks 

like equation 10. And then you realize that in order to solve this equation, we would certainly 

have to define the phi’s at the small e and small w locations. Because, on the right hand side 



of the equation, you find that the phi’s are already available from the cell centers, where they 

are supposed to be updated from time to time.

But you do not have a ready definition available for phi small e and phi small w because they 

are  the  interface  values.  And in  finite  volume approach,  we always  have  to  think  about 

strategies of calculating these interface values. And there could be different possibilities here, 

which we will explore in due course. Further, now, that we have defined F and D. Based on 

that we come up with a definition of a very important non dimensional number, which is 

called as the cell Peclet number.

So, cell Peclet number is defined as the ratio of small f rather capital F and capital D and that 

works  out  to  be rho u delta  x  by gamma.  Now, since we are  using cell  dimensions  for 

calculating the D therefore, we call it as the cell Peclet number. It is nothing but a ratio of  

these fluxes the advection fluxes and the diffusion fluxes.
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Now, if you look for an exact solution of the advection diffusion equation, then you would 

have to define a framework like this that you have a one dimensional domain of length capital 

L. And then you have a variation of the transport property phi within this domain which of 

course, would depend on the strength of the velocity, because, that would decide that how 

strong or how weak the advection is and rest of it is of course, diffusion of the property phi.

And then based on the boundary values that you have at the two ends of the domain, phi 

nought say at x = 0 and phi L at x = L. You will need to define a variation of phi based on 



exact solution of the advection diffusion equation and incidentally the solution comes out to 

be like this. Now, you could of course, attempt to solve it yourself as a homework problem 

for which we will just discuss about one or two small steps to be noted down which could 

help you in solving this problem at your spare time.
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So, when you try attempting to solve this problem. Let us write down the transport equation 

once more, yeah. So, this is the equation we are trying to solve. And remember that we are 

solving it over a domain of length L and we have the boundary values phi nought and phi L. 

And at any arbitrary location x, we are trying to find what the value of phi is. So, for that we 

can define a non dimensional parameter theta let us say.

Taking clue from the solution that this kind of a term figures in the solution and we try to non 

dimensionalize the length by define dividing the length scale x by the total  length of the 

domain capital L. And if you use these parameters, you can show that the governing equation 

can be reduced to a much simpler form which looks like this. So, we have d dy which is 

essentially the non dimensional length (()) (12:41) applied on the product of Peclet number 

the cell Peclet number and theta and that is equal to d dy of d theta dy.

So, of course, you can understand that this is essentially the transformed advection term and 

this  is the transform diffusion  term of the transport  equation.  And we of course, have to 

define boundary conditions based on which we are trying to solve this differential equation. 

So, at y = 0, you can easily show that theta = 0 because at y = 0, phi will be equal to phi  

nought and therefore, theta becomes 0 and then at y = 1 theta becomes = 1.



And then essentially this equation can be further written in a more compact manner like this. 

And then you need to integrate it; integrated and apply the boundary conditions. And then 

you should be able to come up with the final solution which can be written as in a more  

compact manner than what we showed in the earlier slide by introducing the Peclet number 

there.

So, you have exponential terms the one in the numerator would look like this, e to the power 

of P e times x by L - 1 and what you have in the denominator is e to the power of Peclet  

number - 1. So, this is how it figures. So, this is the exact solution of advection diffusion 

equation in one dimension.
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And then taking clue from this definition, one can derive very interesting results. Let us say if 

you are plotting a theta x curve or x theta then you can imagine that for Peclet number = 0,  

you would have zero advection effect. Right. By definition, as you can recall, this is equal to 

F by D, and therefore Peclet  number = 0 when this  goes to 0.  That means you have no 

advection it is all diffusion.

And then if you look at the governing or rather their solution, exact solution, you will find 

that zero Peclet number will give you a linear variation. So, it will be a straight line. While if 

you vary the Peclet number from there, let us try to draw the trends, you will find that Peclet 

number > 0 would have a trend like this, Peclet number < 0 would have a trend like this.



So, if we imagine that Peclet number < 0 would mean that instead of going from left to right, 

the flow is actually moving from right to left, which will give you a negative velocity here; 

based on our reference direction. So, if we have a negative velocity based on that we can of 

course, define a negative Peclet number. And then it would show a trend like what we have 

drawn here.

And then if your positive Peclet number becomes very large than in the limit. For very large 

positive Peclet numbers, the trend would look like this. While for very large negative Peclet 

numbers, the trend would look like this. So, how can we ascertain these trends for that of 

course, we have to do a small exercise. For example, if you try to do a d dx of theta, then that  

would give you slope information.

And then further, if you take a second derivative of theta, it would actually define which way 

the curve would bend whether it could be a concave or convex kind of a curve. So, that can 

be explored by you further as a homework exercise. So, these give very interesting trends 

about how advection diffusion equation solutions are expected to behave.
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The most important take home from this exercise is that we have an exponential variation of 

phi which needs to be kept in mind. So, when we try to use different kinds of numerical  

schemes to approximate advection diffusion equation, we always need to keep in mind that 

the solution will end up showing some exponential behavior. And when does that behavior 

show stronger exponential nature? When the Peclet number becomes larger and larger.



So, that means advection becomes stronger and stronger. So, stronger exponential behavior 

expected for larger self acclaimed number, which means stronger advection. So, these are 

very interesting trends which we are getting from the exact solution. So, we will try to keep 

these trends in mind when we go in for testing the capability of different numerical schemes 

in solving advection diffusion equation in an effective manner.

(Refer Slide Time: 19:10)

So, we were talking some time back as to how we should define the phi (()) (19:18) at the 

east and west interfaces because, as we said that these are not known to us ad hoc. So, there 

could be different techniques by which we define these different schemes by which we define 

these values of the interfaces. So, we are testing the first such technique here, which is the 

technique of linear interpolation. That means, let us try to make a simple sketch.

So here  is our node P node E. You are not going to draw the control volume with all its 

features every time because we already have that picture in mind from our previous slides. 

Here, what we need to understand is that between P and E, we have the node e between W 

and P we have the node w and that essentially defines the control volume surrounding the 

node P. And the question is how to calculate these files.

So, if we try to represent the value of phi at the node P by this length, let us say. And then 

again we define the value of phi E by this length. Then if you look at the definition of phi E  

here we are just  averaging phi P and phi  E.  So,  what  are  we doing? We are essentially 

drawing a straight line connecting these two values. And when we have equal distances then 

obviously, it is just an arithmetic average.



But, as we mentioned earlier, you do not essentially need to have equal distances and this is 

one of the biggest flexibilities of finite volume technique that you can have unequal distances 

at your convenience because very often in fluid flow problems, we prefer on equal distances, 

when we have to capture strong gradients. So, we put a very fine grid in order to capture large 

gradients,  and then  we tend to  put  a  coarser  grid  where  the  gradients  are  decaying  and 

becoming weak.

So, we do not have large number of nodes in such regions because that saves us computing 

effort. So, if that is the case even then you can very easily try to define phi e for example, by 

having unequal lengths over here separating the P from small e and small e to E capital E. So, 

that  can  be  a  simple  exercise  for  you.  So,  we  find  that  whether  it  is  equal  or  unequal 

distances, we are essentially connecting a straight line.

And that essentially means piecewise linear profile. Similarly, if phi w is indicated by this 

height, for example, we would again join a straight line here and define (()) (22:30) phi small 

w this way. So, this is the strategy of linear interpolation. Now, as we do that remember that 

we are handling advection flux and we are not paying attention to the direction of the flow 

direction, direction of the flow, sorry.

So, we are paying equal weightage to nodes irrespective of flow direction that is something 

that we are committing over here. Would it affect the calculations in any way? That would be 

answered later. But we need to keep this in mind. And we are going to go ahead with this 

definition and when we use this kind of a definition,  correspondingly when we use finite 

difference method, we would have called it as a central differencing scheme.

So, very often linear interpolation of CDS essentially means the same. Again remember that 

all the different techniques that we are going to discuss about we are only going to touch 

about  touch  upon  the  advection  terms  for  applying  different  techniques,  while  for  the 

deficient terms, we are not going to touch the technique it is going to be uniformly CD2. 

Because we have learned earlier that diffusion does not have preferential direction. Right.

So, that is the basis on which we will continue to use central differencing for the diffusion 

terms.
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Now, let us try to work out central differencing or linear interpolation for advection term. So, 

we will make a small diagram like this. Let us say, it is a length A B with boundary values of 

phi given by phi A and phi B and let us put few nodes inside. So, these are the control 

volumes and at the center of the control volumes we have the nodes. So, incidentally we have 

marked four nodes five nodes rather. And let us use a uniform grid for the purpose.

So, if we have this then we can go ahead and start fighting the discrete form of the transport 

equation, node by node. So, what we will do in the beginning is write down the discrete form 

of the equations. Let us say, for the first node. Let us try to do that. So, for the first node, let  

us see how we write down the equation. We write this for the advection term. Remember that 

the left hand side of the equation, what does it have? It has a difference between F e phi e - F 

w phi w.

This is what the left hand side of the discrete equation has. So, this is F e phi e, phi e being 

phi  P + phi E by two -  F w phi  w. Now, how do you do a phi  w based on the linear  

interpolation. For that you should have had a node somewhere here which you do not have 

because that lies beyond the boundary. So, what do you do you truncate the domain and you 

try to calculate using a different strategy and incorporating the boundary value itself.

So, you define the convective flux F as say F A and or rather the term F as F A and then the 

advective  flux  then  becomes  F A times  phi  A where  the  boundary value  is  used.  What 

happens on the right hand side of the equation? The right hand side of the equation looks like 



this. Let us try to put the right hand side values. So, here you will notice that this is a regular  

calculation based on the CD2 scheme which we have already talked about.

While again over here the boundary value has to come in and then D again has to be defined 

in a different way. Let us see how we do these definitions. First thing is that F e = F A = rho 

u. This has to be convert station to station. It cannot change. Right. That is why the continuity 

equation. So, you may as well define it as say capital F if you wish. What about D e? D e  

would be defined as gamma by delta x.

And what would be D A? D A would be gamma by delta x by 2. Remember that here the 

distance that you are using is delta x by 2 not delta x. So, the D at the boundary A becomes 

different. It becomes 2 gamma by delta x. So, if I call this as capital D then this becomes 2 

times capital D, twice the effect. Right. So, this is how I would write down the discrete form 

of the equation at the first node. How would I do it for other nodes?
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Because try to go to the node 5. So, remember that phi e = phi B for the node 5 because that 

is how we bring in the boundary value while phi w will continue to be estimated based on the 

linear interpolation. Right. So, once we take note of that we can write down the advective 

flux like this F B phi B at the east boundary - F w by 2 into phi p + phi w which remains as  

the regular linear interpolation.

And then on the right hand side, what do we have? We have D B times phi B - phi p - D w 

times phi p - phi w. Again, the kind of changes we made for the boundary for the node 1 



would work similarly over here. Let us see how we do it. So, you recall that F w will be equal 

to F B will be (()) (29:56). Right. let us call it F because that is again coming from continuity 

equation.

We are incorporating the value of phi B here without going in for any linear interpolation,  

because we have reached the boundary.  And then as far as the diffusion part is comes up 

concerned, D w is a regular definition. So, D w will be given by gamma by delta x, while D B 

will be defined as gamma by delta x by 2, which makes it 2 gamma by delta x. So, things are  

somewhat similar to what we see in node 1.

So, again, if I call this as D, this will become 2D. Right. So, this is how we are able to figure 

out the equations for node 5.

(Refer Slide Time: 30:54)

And now, we will try to look at node 2, 3, 4, for which the scheme will remain identical. So,  

that is rather a much simpler job, because we have already learned to do the more difficult 

part  at  the  boundaries.  So,  this  is  how  we  do  it  for  linear  interpolation.  And  linear 

interpolation works equally well on both sides of the control volume because it is a internal or 

inner control volume, it is not sharing a boundary.

So, linear interpolation for both terms. Right. So, that is how it works. And then even on the 

diffusion part, you will see that you can use the regular CD2 without any difficulties. Right. 

So, remember that these are small e's and small w's. And finally,  what do we have if we 



rearrange the equation it would look somewhat like this. So, this is how the left hand side 

would look and the right hand side will look like.

So, this is how the equation looks like finally for the internal nodes. So, we will continue this 

discussion in the next lecture. Thank you.


