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Lecture - 31
Numerical Solution of Liner Wave Equation (Hyperbolic PDE) (continued)

We continue our discussion on linear wave equation in this lecture. 
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In the previous lecture, we had discussed about the modified partial differential equation. So, 

we are revisiting that equation here in the starting slide. So, we remember that we did it for 

the first order upwind scheme for discretizing the linear wave equation and we could identify 

that  there  are  error  terms  in the truncation  error  and incidentally,  the  leading error  term 

happens to be a second order derivative in space associated with a coefficient. 

So, we had also discussed that the modified partial  differential  equation is effectively the 

partial differential equation which we end up solving when we approximate the governing 

partial differential equation using a numerical scheme. And though we enforce the initial and 

boundary conditions, which are appropriate for the exact equation, we end up using them also 

for the modified partial differential equation. 

One of the important things that we would like to discuss at this point is that a numerical 

scheme would be considered to be a consistent numerical scheme. If in the limit delta x or 

delta t going to 0, we can limit the modified partial differential equation to the original partial 



differential equation. That means, if you look at equation 6 above, if you were to limit the 

delta x is that you see over here to 0, then you should be able to retrieve the exact equation. 

And we can very easily check that that is what happens over here. Incidentally, you are not 

able  to  see  terms  which  contain  delta  t  because  we  have  converted  all  the  temporal 

derivatives to spatial derivatives or even the mixed derivatives where some part of it was a 

temporal derivative has also been converted entirely into a spatial  derivative.  So, you are 

finding terms with only delta x or delta x raised to certain power.

And as we limit  delta x to  0, then obviously,  you are able to retrieve the original partial 

differential  equation.  So, if  that happens, then you have a consistent discretization of the 

original partial  differential  equation. So, in this case, as you can figure out that the FOU 

scheme, the first order upwind scheme is a consistent scheme. 

Additionally,  we have another property that if we are looking at a discrete solution of the 

original partial differential equation using the numerical scheme that you are proposing, the 

discrete  solution coming from the numerical  scheme should approach the solution of the 

governing partial differential equation itself as this limiting exercise is implemented. So, this 

property is of course, in terms of the solution itself.

So, consistent property was with respect to the modified partial differential equation limiting 

to the original partial differential equation, while the convergent property is linked with the 

solution  itself  of  the  discrete  form coming  from  the  numeral  numerical  solution  of  the 

original  partial  differential  equation and whether that discrete  solution is  approaching the 

solution of the original exact partial differential equation. 

If that is valid, if that is being satisfied, we have a convergent numerical scheme. Now, P.D. 

Lax was the scientist who proposed a theorem, which states that if a numerical scheme is 

both consistent and stable, then it is automatically convergent. 
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We see that the first order upwind scheme is a first order accurate scheme both in space and 

time. That is obvious from the leading error term that you have over here. And we also notice 

another very interesting property that if you set c = 1 that means the CFL number is set equal 

to 1, then all the terms in the truncation error seem to vanish. That is a very, very important 

property that means you were going to solve the linear wave equation exactly. 

In that case, you will not be having these error terms at all. This is often called as satisfying 

the shift condition that means a certain situation where you are able to take the truncation 

error part completely off that means you are able to limit to the original partial differential 

equation itself. Now, the lowest order term that you have in the truncation error, which is 

often called as the leading error term. 

If we look at that term that is of significance to us, because that is supposed to be the most 

significant error term, which will affect the solution that we see contains a partial derivative u 

xx,  the  second  order  derivative  in  u.  Now,  u  is  essentially  the  property  that  is  getting 

transported. So, if you are talking about a second derivative of that property, that is similar to 

the viscous term in the Navier Stokes equation. 

So,  we  have  just  written  the  x  component  momentum  equation  here  of  Navier  Stokes 

equations for easy reference and we find that this is a viscous term that we see on the right 

hand side of the Navier Stokes equation. And the leading error term in the truncation error for 

the first order upwind scheme looks very analog to (()) (07:00). Of course, you do not have a 



viscosity coefficient out there, but you have a certain coefficient, which we may call as a 

numerical viscosity coefficient, let us say. 
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Now, whenever c is not equal to 1, what this term is going to do is. It is going to introduce a 

very important property which is called as artificial viscosity. That means, it is going to play 

the role similar to molecular viscosity, what you see in viscous simulations of the problem 

through Navier Stokes equations. So, this comes automatically by virtue of the numerical 

scheme that you were using. 

So, it is implicitly introduced; it is not that you are explicitly adding this kind of numerical 

viscosity or artificial  viscosity,  but it  is  coming implicitly through the kind of numerical 

scheme that we are using to discretize the linear wave equation. Now, what would this do this 

would introduce dissipation, it is going to reduce the gradients in the solution. This we have 

seen when we have talked about say elliptic partial differential equation. 

Now, whenever positive numerical distribution is introduced for the range of values of C that 

we see over here. So, this is essentially the CFL number limit or the CFL number range that 

keeps first  order upwind methods  stable.  Then we have positive numerical  dissipation  in 

action. And this would play a role similar to the kind of momentum dissipation we see in 

viscous flow problems. 

And in  viscous  flow problems,  how momentum dissipation  takes  places  is  simultaneous 

presence of the molecular  viscosity coefficient and fairly high velocity gradients in some 



regions of the flow which can make the viscous terms very significant. Now, that is often 

seen in regions like boundary layers, which are found on solid surfaces, mixing layers and 

things like that. 

Now, if you have a situation in the first order upwind equation where c is greater than 1, then 

that  is  going  to  create  negative  numerical  dissipation  because  that  would  give  rise  to  a 

negative  term  here  or  anti  dissipation  that  means,  a  phenomena  which  is  opposite  to 

dissipation, and this would lead to blowing up of the numerical solution. The slightest of 

errors  that  build  up in  the solution  would get  amplified  very severely and gradually the 

solution will go out of control. 

So,  this  is  something that  one must  avoid when one is proposing a numerical  scheme to 

represent  the  linear  wave  equation  in  an  approximate  manner.  Now,  interestingly,  this 

outcome that  we have found here that  keeping the artificial  viscosity coefficient  positive 

gives us the same outcome as the outcome that we saw through the Von Neumann stability 

analysis. 

So, that both the approaches have led to the same outcome that means the c value that CFL 

number value should be bounded in this manner. So that we can keep the system stable. So, 

this is a very interesting outcome, which we are seeing through two apparently different ways 

of looking at the same problem. 
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If we quickly recall about the forward time central space scheme for discretizing linear wave 

equation, we remember that it did not work because it was unconditionally unstable. This, we 

have  shown through the  Von Neumann  stability  analysis.  So,  though it  is  not  an  useful 

scheme, we would like to revisit it once more just to see that how does the modified partial 

differential equation form of the FTCS scheme look like? 

Does it give us a clue similar to what Von Neumann stability analysis gave us. So, we find 

that there is negative numerical dissipation coming in the leading error term in the truncation 

error for the FTCS scheme. So, that is the recipe for trouble. So, like Von Neumann stability 

scheme has shown that it is unconditionally unstable. 

Here we see through the modified partial differential equation approach that it has a negative 

artificial viscosity and that means anticipation and therefore, it is going to be unstable. So, 

both approaches are consistently showing the same outcome. 

(Refer Slide Time: 12:00)

Another very important property of numerical schemes is what we call as dispersion. Will 

show some examples more concrete examples to explain how this person works, but, for 

now, let us first try to understand it from very basic perspective. We had done this in our 

previous lecture as well, but we are revisiting it once more to make sure that the concepts get 

through very clearly. 

So, dispersion happens when different wave number components of the waveform that we are 

talking  about  travel  at  different  speeds that  means,  not  all  the wave number  components 



travel at the same speed. Ideally, if we were exactly representing this equation, then there was 

no reason for worry, because every wave number component would then have traveled at the 

same wave speed that is a. 

So, does it really travel at a? That is a question to ask and the answer if the answer is no, that 

means, different wave number components are essentially traveling at different speeds. None 

of them are all or most of them are not complying with a and if that is the case, then we 

would have an error  introduced into  the  solution  which  we call  us  this  dispersion error. 

Usually, when we look at the truncation error part, we would find them in the form of odd 

derivative terms. 

So, once we have found the modified partial  differential  equation in the modified partial 

differential equation, we look at the leading error term and if that happens to be the odd, 

happens to be an odd derivative term, then that would be responsible for this dispersion of the 

wave. So, earlier we were looking at dissipation, we remember that the first order upwind 

scheme shows positive dissipation. 

So, dissipation is certainly connected with the modulus of G because that will be responsible 

for  gradually  decreasing  the  amplitude  of  the  wave.  So,  that  is  its  dissipation  while  if 

different components of the wave in terms of the wave number contributions get segregated 

out because they are traversing at different speeds then that leads to dispersal. Now, what is  

the typical signature of this person, you will often see wiggles formed. 

Wiggles formed around what around the initial waveform. You would see wiggles formed 

either  ahead  of  it  or  behind  it.  So,  wiggles  would  be  found in  and  around  the  original 

waveform as  it  translates.  That  is  a  typical  signature  of  dispersion.  Now,  if  we  have  a 

combined effect of both dissipation as well as dispersion working almost with comparable 

strength, then we may end up having a diffusive error. 

That  means,  we  are  no  longer  talking  about  a  segregation  in  terms  of  dissipation  or 

dispersion,  but  in  general  a  term diffusion which spreads out  sharp dividing lines  in  the 

computational domain if they exist at all. So, here we are talking about a sharp feature, a 

sudden change in a property,  say u which is  getting transported.  So, if  you are trying to 

numerically capture this feature, then a diffusive scheme could capture it gradually like this. 



As you timestep the problem, the sharp front will get weakened. A predominantly dispersive 

scheme will try to capture it  this way.  That means, it  does not lead to decrements of the 

sharpness or even decrements of the amplitude, but it generates wiggles. Wiggles can even 

form simultaneously ahead and beyond of the front. And usually these errors get very much 

amplified when you have sharp fronts to be captured. 

So, sharp  fronts could be very challenging situation for numerical schemes. Typically, first 

order accurate methods like FOU would show predominantly dissipation error, while second 

order methods would primarily show dispersion error. 

(Refer Slide Time: 16:21)

So, we are just trying to sharp on the general rule. So, if the lowest order term or leading term 

in the truncation error contains even derivatives, then we see predominantly dissipative errors 

in the solution while if the leading error contains or derivative, then we predominantly see 

dispersive  error.   To  discuss  1or   2  more  aspects  which  will  give  us  more  insight  into 

dissipation and dispersion error. 

Also,  we  would  revisit  the  first  order  upwind  scheme  once  more  to  show  that  we  can 

represent it in a manner where it is shown as a combination of central differencing portion as 

well as an artificial viscosity portion. That means, we can in general show upwind schemes to 

be coming out of a central differencing summed with an artificial dissipation term with a 

tunable coefficient.



So, upwind schemes are all generally developed this way. So, let us try to see the example for 

the first order upwind scheme. And after this we will also look a little bit more on dissipation  

and dispersion. 
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So, we are revisiting the first order upwind scheme. And now that we have understood the 

concept of modified partial differential equation as well as the artificial viscosity. We will see 

how these concepts come in, in framing the first order upwind scheme and now, as we frame 

it,  we frame it in a more general sense, a more general form, where we account for both 

positive and negative wave speeds which means that a can be greater than 0 or a can be less 

than 0. 

So, if you have any of such situations, can you have a more generalized representation of the 

first  order  upwind  scheme.  So,  let  us  try  to  achieve  that  first.  So,  we  write  down  the 

discretization for the FOU scheme first where a is greater than 0. So, as you remember that 

this would be the FTBS scheme, the backward differencing in space and when a is. So, this is 

for a > 0 and when it is for a < 0 then you essentially have the FTFS scheme.

So, FTBS and FTFS schemes here. Let us introduce some new nomenclature say C+ will 

represent as this and C- as this. So, this is mod. 
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As we do this we can represent the first order upwind scheme in a more general form where 

you can cater to both positive as well as negative wave speeds. So, this is how one write it  

and if you substitute the values of C+ and C- and do a little bit of arrangement, you will be in  

a position to show it  this way.  So, this is the final  form as you can understand that this 

contribution comes from a central differencing.

So, it is a second order central differencing which is involved because we have i + 1 and i - 1 

terms.  While  this  contribution  is  like  an artificial  viscosity  term.  So,  you  remember  that 

artificial  viscosity  or  the  first  order  upwind  scheme  was  showing  up  as  a  second  order 

derivatives; the leading term of the truncation error. So, the second order derivative will be 

proportional to this bracketed term. 

That  means,  this  is  connected  with  the  artificial  viscosity  content,  which  is  added  to  a 

centrally different portion which would give you an equivalent upwinding effect and this is a 

general rule. So, it works for more higher order accurate upwinding as well. So, let us say, if 

you  are  looking for  a  third  order  upwind  scheme in  order  to  improve  your  accuracy of 

upwinding in the formal accuracy. 

Since, then you would go for CD4 and add artificial viscosity to it which would involve the 

fourth derivative of the dependent variable. So, let us say it will be u x x x x with a certain 

coefficient, which you can control. Let us call that coefficient as a k. So, that would be the 

kind of expression you would use to represent artificial viscosity to be added to a CD4 in 

order to give you a third order upwinding. 



So, this is another aspect of how centrally difference scheme can be converted into an upwind 

scheme. 
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We do a little more discussion on dissipation and dispersion. Let us go back to our governing 

partial differential equation which is this and let us assume a solution of this form for u as a 

function of space and time. Let us say we assign a certain amplitude term and we purposely 

introduced a suffix k that means,  amplitude which is a function of wave number and we 

include the usual exponential term which we have discussed in previous lectures as well.

Especially,  where  we had tried  to  quantify dissipation  and dispersion  error  of  numerical 

schemes and compare them with the exact solution. So, in that case, we had not included this 

amplitude term, but to give more general flavor we would include an amplitude term as well 

over here. And then we know that if we substitute it into this governing equation, this would 

be a solution for the governing equation.

Let us do it very quickly. So, if we do a time derivative, then what do you get? You get the 

amplitude term here and then you will get a - I k a into e to the power of I k x - at. So, this  

would be the time derivative. And then if you do the space derivative, you will get A k times  

I k into e to the power of I k x – at. Now, obviously, the A k into the exponential term that is  

nothing but u itself. 



So, it is - Ik a u for u t and it is I k u in case of u x. So, now, if you substitute these  2 

expressions into the governing partial differential equation, you get – I k a u + a into I k u and 

which of course is equal to 0 and therefore,  that proves that this form satisfies the exact 

partial differential equation. 
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So, we would like to see further that instead of the linear wave equation, if we include a 

dissipation term on the right hand side of the equation, then what kind of a trial solution 

might work. This, we are interested because now we have seen modified partial differential 

equation emerging from the different numerical schemes that we are trying to use. 

So, if this is the form of the modified partial differential equation accounting only for the 

leading error term, that then what kind of trial solution might work in order to solve it. So, let 

us try one. So, we just include another exponential term here, in addition to the functional 

form that we had already assumed for the wave equation alone, and then the challenge would 

be to solve for the unknown parameter b. 

So, how do we go about it? So, we first take the time derivative, and we find that that would 

be equal to let us try to segregate the space and time out, because that will help us calculate  

the time derivative more easily, this is the beauty of partial differentiation. So, this operator 

will essentially operate only on this part. So, what what are we coming up with it is giving us 

– I k a + b into the spatial part along with the amplitude and then the temporal part. 



So, as we can understand this is nothing but – I k a + b into u. So, that is del u del t. And then 

we have to work out the del u del x.  So, we actually have to work out a del u del x and that is 

very easy to calculate. It is i k into u. That is more convenient to calculate. Right. So, now, if 

you substitute these  2 forms into the partial  differential  equation that we are looking at, 

which is essentially linear wave equation with the second order dissipation term on the right 

hand side, then what do we get. 
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We substitute and we should be able to get, we will try to write it down this way. So, del u 

del t is - I k a + b into u and a del u del x is I k a into u. And if you check, that gives us, so,  

we are left with so this and this term and calculate will go away and we are left with b times 

u. So, that is what we have from the left hand side. Now we have to work out the right hand 

side.

So, for which we actually have to find out the second order derivative. So if you work out the 

second order derivative, you will find that this works out to be I k del u del x. So, that is I k  

square u,  that  is  -  k square u.  And therefore,  now, what we have essentially is  we have 

worked out all the terms that we need. So, we had we had – I k a + b into u on the left hand  

side  coming  from  the  temporal  derivative,  then  I  k  a  into  u  coming  from  the  spatial 

derivative. 

This is del u del t. This is u del u del x. And then on the right hand side you now have - mu 

not k square u. So, as we showed that we will be left with b times u on the left hand side and - 



mu square k square u on the right hand side which gives you the value of b which is - mu not  

k square. So, finally, we have solved for the value of b. 
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And therefore, the solution u x t will then be A k e to the power of I k x - at into e to the  

power of so, we now substitute the b that we have worked out. So, this is the final form for 

the linear wave equation with second order dissipation. So, we will discuss more about this 

equation in the next lecture. Thank you. 


