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Lecture - 30
Numerical Solution of Liner Wave Equation (Hyperbolic PDE) (continued)

In this lecture, we will continue our discussion on the dissipation and dispersion error that we 

have been discussing in the last lecture.
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So, this is where we ended in the last lecture by writing an expression for the dispersion error 

and we said that it is going to accrue over different time steps and in each time step, the 

difference between the phase angle for the exact phi exact - phi numerical will get added up 

N number of times, where N is the number of time steps of computation that you perform. 

And therefore, that would result in the total error that you commit in this portion. 

Earlier, we have discussed about the dissipation error. So, if we look at the first order upwind 

scheme for example, then it could be interesting to see what is the so called relative phase 

error after 1 time step. So, here what we are doing is we are taking a ratio between the face 

expression  which  comes  from the  numerical  scheme.  Here,  in  this  case,  it  is  first  order 

upwind and the exact expression we had earlier derived. 

So, that will be in the denominator. So, let us write down the expression for phi for the first 

order upwind scheme. So, here we have - C sin theta divided by 1 - C + C cos theta. So, tan  



inverse of this by it was - C theta, which is the phi exact. So, now, as you can understand that  

you would be varying theta over the entire range of phase angles (()) (02:50) space from 0 to 

2 pi and then you could also change C. 

So, C is essentially a parameter which you can choose based on the constraint that C remains 

bounded by the CFL criteria which we discussed earlier. So, you could take different values 

of C based on this inequality and then check that how the relative phase error works out and 

remember that this is the phase error that you are committing in 1 time step as a ratio. 
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So, we will make a simple plot to indicate how things can be compared in this manner. What 

we are plotting is essentially phi numerical by phi exact the first order upwind scheme. So, 

what we will do is we will first draw at unit circle and this is what comes when you use C is 

equal to 1.  While this needs a bit of redrawing while if you are choosing a lower value of C,  

say C = 0.25 then the plot looks like this, this curve. 

And if you choose something like 0.75, then the plot looks like this. So, we try to jot down a 

few points. So, we have jotted down something to begin with. So, what we are saying is that  

if the relative phase error, which is nothing, but that ratio of files it exceeds the value of 1 for  

a given value of theta, then the corresponding Fourier component of the wave number of the 

numerical solution has a wave speed greater than the exact solution and this is what is called 

as leading phase error. 



Now, what does it mean? Let us go back to the definition of theta. So, in the wave number 

space, we have defined theta as the wave number times, the grid spacing, the spatial grid 

spacing k times delta x. So, for a given theta and also grid spacing you have a given wave 

number  that  means,  as  you  vary theta,  which  we are  showing in  this  diagram.  You are 

essentially addressing different wave numbers. 

So, as the wave numbers change, we are finding that the phi numerical by phi exact is taking 

up different values and the paths are different if the CFL number is also different that means 

for the chosen CFL number. It means that over the range of thetas, as you follow that  (( )) 

(08:33). There is  no guarantee whether you will  be following the unit  circle.  Where phi 

numerical and phi exact are in match with each other. 

So, either it may exceed or it may be reduced on a comparative scale. So, then what happens 

when you have an excess. So, related phase error exceeds 1 that is what we have jotted down 

over here.  That means,  in that case, that particular  wave number part  will  speed up with 

respect  to  the theoretical  wave speed.  So,  the wave speed will  be greater  than the exact 

solution. Why? Because phi numerical happens to be larger than phi exact. 

That is why the ratio is exceeding 1 and that means,  the waves rather that wave number 

component of the wave is actually traveling faster than the analytical wave. That means, if I 

were  to  call  a  numerical  then  a  numerical  is  greater  than  a  exact  at  least  for  that  wave 

number. And how is that wave number specified here? It is specified by the choice of theta 

you have already chosen delta x through your grid distribution. 

And now you are varying theta, which means basically, that wave number k will get modified 

as you vary theta. You will go from lower wave numbers to higher wave numbers, that is 

how you cover the entire wave number range, which you can capture within your grid size. 

Right. And we already know that the highest wave number that you can capture depends on 

the grid spacing that we have discussed earlier. 

So, that way over the entire range of wave numbers that you can capture with your  grid 

spacing, this is how the the ratio of phi is how you can actually say that whether that wave 

number component of the mother wave will travel at a exact or greater than a exact or less 



than a exact. So, we are just talking about a situation where the ratio exceeds 1. That means 

phi numerical is greater than phi exact. 

In that case, that basically means that that wave number will travel faster than the theoretical 

wave. And this is what is called as leading phase error. If it is just the other way around that 

means a relative phase error is less than 1 then what will happen to the numerical wave, it 

will  lag.  It  may  not  be  this  that  the  entire  wave  will  lag.  It  is  a  certain  wave  number  

component of the mother wave which will lag. 

So, for that particular k if the phi numerical by phi exact happens to be less than 1, then that 

wave number component of the mother wave will lag and that is what is going to be call as 

lagging phase error. 
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So, if relative phase error is less than 1 we have wave speed of numerical wave less than 

exact wave and that gives rise to what is called as lagging phase error. So, if we were to 

highlight  on  just  one  wave  number,  how would  the  situation  look  like?  So,  if  this  was 

location of the exact wave at a certain point of time, if you had a leading error, then this is 

how it would look like. 

So, the numerical 1 would have speeded up. If you had a lagging error, then how would it 

look like? Let us try to put it on the same plot. So, in the case of a lagging error, it would be 

moving slower than their exact. So, this is a lagging case while the other one is a leading 



case.  And how do you quantify there,  it  is  a gap between the two. Of course,  this  is an 

accrued grap over n time intervals of calculation. 

But if this was the gap created in 1 time step, then this would be given by the relative phase 

error  that  is  in  a  ratio  form while  this  is  in  the  actual  form of  values.  That  means,  the 

difference between say phi exact – phi numerical, not the ratio. So, this is how phase error is 

quantified. 
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Now, incidentally for the first order upwind scheme, we see leading phase error for this range 

of Quran, this range of  CFL number and the lagging phase error for a lower range. That is 

why in the previous plot we had seen if we go back and check in this figure that for lower 

values of C that is say 0.25 less than 0.5. What are we seeing the ratio happens to be less than 

1 everywhere, wherever you are on that locus. 

You are at a ratio less than 1 because the limiting ratio is the unit circle. If you are on the unit  

circle, there is no difference in phases. There, the numerical wave is exactly in phase with the 

exact 1 if you are having a C lying between say 0.5  and 1 slightly less than 1  like C is equal  

to 0.75, then you have a leading error. That means the numerical wave is going faster for a 

wide range of wave numbers only for very small wave numbers. 

Is it close to the exact wave? But, the more we go to the higher wave numbers, it is having an  

increasing gap between the exact wave and the numerical wave. That is because this curve is 

going further away from the unit circle that is the indication and that is happening at higher 



values of theta that means, higher wave numbers. So, usually complications are more as you 

go to the higher wave number range anyway.

So, we discussed quite a bit on the dissipation and the dispersion kind of errors for wave 

propagation  problems.  Now,  we  are  going  to  discuss  another  aspect  of  the  linear  wave 

equation,  which  is  often  called  as  modified  partial  differential  equation  approach  or 

equivalent partial differential equation approach.
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So,  a  little  bit  of  recapitulation  of  what  we have  already  discussed  about.  So,  we  have 

discussed  about  the  upwind  technique  for  doing  finite  differencing  of  the  linear  wave 

equation.  And  we  understood  that  upwind  technique  is  essentially  a  first  order  accurate 

technique  with accounting  the  windward or  upstream direction  of  the  propagation  of  the 

waveform. 

And we found that when a is greater than 0, it is equivalent to using the FTBS scheme the 

forward time backward space scheme. When a is less than 0, it is forward time forward space 

scheme and we understood that from Von Neumann stability analysis. This is the range of 

CFL numbers which need to be used. Now, we are going to discuss about a technique by 

means of which we use the Taylor series expansion for replacing the terms other than u i n in 

the finite difference expression for the first order upwind scheme. 

So, in the first order upwind scheme we have terms other than u  i n. So, now, we are going to 

substitute the Taylor series expansions for the other terms, which means u i n +1 and u i – 1  



n. And this we are doing to develop another new tool, which we will be discussing now. So, 

let us see how do we go about doing that. So, the Taylor series will be developed both in time 

as well as in space. 

Because, as you can understand u i n + 1 is temporarily different from u i  n in the sense that  

grid location wise spatial grid location wise, it is the same point i but time wise we are at a  

different time step. Therefore, when we do a Taylor series expansion, then we have to expand 

it in time. So, what we are doing is that you have, you are expanding it about u i n and you 

are expanding it in time. 

Therefore, you are using time steps here to be multiplied with the time derivatives of u. So, 

these are the higher order time derivatives and these are the time steps. So, that is how we are 

having the Taylor series representation for u i n + 1 and of course, the representation for u  i – 

1  n  is  a  very  routine  thing  that  is  a  Taylor  series  in  space  which  we  have  dealt  with  

adequately earlier also. 

Only thing is that because it is i – 1. So, it is in the negative direction and therefore, there will 

be flipping of science of the different terms in the Taylor series. So, what we have got is a 

form of the original finite difference equation with Taylor series expansions incorporated in 

it.

(Refer Slide Time: 19:38)

Now, if we arrange the terms, we will find that it can be represented this way. So, the original 

linear  wave equation  is  this.  And by means  of  the  first  order  upwind scheme,  we have 



essentially approximated it.  So, when we approximated we ended up generating error terms, 

which are truncation error terms and by means of the Taylor series approximations. We have 

essentially  generated  the  total  truncation  error  terms  here  on  the  right  hand  side  of  the 

equation. 

So, the left hand side of  (( )) (20:30) the equation it corresponds to the exact wave equation, 

while  the  right  hand  side  is  the  total  truncation  error  due  to  the  particular  numerical 

discretization  that  you  have  used.  So,  it  is  very  specific  to  only  the  first  order  upwind 

approximation  that  we have used.  For  a  different  numerical  scheme,  the  truncation  error 

would look different as well. 

Now, the significance of the truncation error term can be better interpreted if you can convert 

all the temporal derivatives that you see in the truncation error to spatial derivatives entirely. 

So,  right  now, as they stand you have a mix  of spatial  derivatives  and temporal  or time 

derivatives. So, we want the time derivatives to be converted to spatial derivatives as well. 

So, that is how we go ahead in restructuring the truncation errors. 

So, what is the starting point, we want to replace u tt that is the first term here on the right 

hand side by means of a spatial  derivative term. So, in order to do that we take a partial 

derivative of the equation 1 with respect to time. So, when we do that that means, when we 

take a partial derivative of equation 1 with respect to time we come up with the equation 2. 

So, you can see that it is nothing but equation 1 with a partial derivative in time added to each 

one of the terms. 

And then we do another operation we take a partial derivative of equation 1 with respect to x 

and multiply the resulting equation by - a. So, what do we do in this step we take a partial 

derivative with respect to x that means, the first term now has u tx because you are taking a 

partial derivative with respect to x. So, originally it had ut now, it has u tx originally the 

second term had u x and now it has u xx and so on. 

Additionally, each one of the terms has been multiplied by a - a. So, the first term now has a - 

a the second time has a - a square and so on. So, we have ended up generating 2 equations 

here the equations 2 and 3, which we will further use to replace the u tt in equation 1. So, let 

us see how we go about doing it further. 
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So, when we add the equations 2 and 3, we get an expression for u tt. Now, what does this 

expression contain, it contains a leading term a square u xx and then all the remaining terms 

that it has can be expressed like this. So, you have a delta t multiplied to a bracketed term 

which contains higher order derivatives either in time or in time and space mixed and you 

have still higher order terms which can be represented like this order of delta t. 

Similarly, you would have terms which can be represented like this that they have a common 

factor delta x and then you have term sitting inside the bracket, which are derivatives of space 

or space and time combined, and then the remaining terms can be expressed in terms of order 

delta x. So, this can very well be done. So, you can do it at your own convenience and check 

for yourself. So, this is how we would end up replacing the u tt term. 

So, you remember that this we had to do because this u tt was lying as the first term in the 

truncation error. So, we have to get that replaced by this expression now. Now, if you were to 

go  through  this  exercise,  you  could  similarly  do  this  exercise  or  extend  this  exercise  to 

generate expressions for higher order derivatives which figure in the truncation error and this 

truncation error is what we saw in equation 1. 

So, likewise we can generate expressions for u triple t, u doubte t x, u double x t and so on. 

Now, interestingly you can see that you triple t is a function of u xx and has a coefficient - a  

cube. u ttx is expressed as xxx and a coefficient of - a square. So, the coefficient seems to be 

reducing here and each time, it is getting multiplied with the third order derivative in space. 



That means, we are able to convert all the time derivatives to space derivatives or the mix of 

time and space derivatives to purely space derivative. That means, the ultimate objective is 

converting all mixed derivatives of space and time to derivatives in space alone or converting 

derivatives alone in time to alone in space. So, that way, we should be in a position to express 

the truncation error part entirely as a function of higher order space derivatives alone. 

(Refer Slide Time: 23:22)

So, combining these results, what we will be able to finally achieve is something like this that 

you  now have the  exact  equation  on  the  left  hand side  of  of  this  equation  6 which  has 

emerged.  And now, the right  hand side which is  the truncation  error  contains  all  spatial 

derivatives like what we intended to do. And instead of writing still higher order derivatives. 

We have bunch them up in terms of higher order terms, which would have delta x cube delta t 

cube or mix of delta x square delta t or delta x delta t square which are essentially third order 

terms. Now, you have now, a first order in delta x or a second order in delta x as the leading  

error  or the next 2 leading error terms.  And incidentally the leading error term now has 

second derivative of u and the coefficient associated with it. 

So, the coefficient happens to be eight times delta x by  2 into 1 - e that is the coefficient 

associated with the second order derivative.  Now, the form of the equation that  we have 

achieved in the process is what is called as the modified partial differential equation. Now, 

what is the spirit behind this entire exercise? I mean what are we trying to really achieve for 

ourselves? 



So, we look at the bullet points below and they would give us the clue. So, the modified 

partial differential equation, it can be thought of as the partial differential equation that we are 

actually solving. So, we intended to solve which equation we intended to solve this equation 

the linear wave equation, but we have used an approximation a finite difference scheme to 

approximate it that is the first order upwind scheme incidentally. 

That is the one we are analyzing now. So, is the first order upwind approximation really 

solving the original exact equation? The answer is no, because errors are involved, because 

you  are  approximating  and the  errors  are  essentially  modifying  the  nature  of  the  partial 

differential equation you are solving. So, which equation do you end up solving at the end 

that is what is the modified partial differential equation. 

It is the original equation along with the truncation error that the numerical discretization 

involves. That is what is called as the modified partial differential equation. And that is what 

we have in equation 6 for the first order upwind discretization of the linear wave equation. 

So, coming back to the bullet point, the modified partial differential equation can be thought 

of as the partial differential equation that we are actually solving. 

And in the present case, it is not the linear wave equation but but a much more complicated 

equation. In fact, on the right hand side, we have innumerable terms, it is an infinite series. 

So, there is no end to this equation. So, as a numerical exercise, we cannot really go ahead 

with that. We can at best say that we look at the leading error term out of the truncation error.

And try to see what influence that has on the solution because the later terms would become 

smaller and smaller and smaller hopefully, because they involve higher powers of delta x. Of 

course,  one  can  raise  the  critical  question  that  are  the  higher  derivatives  small  as  well. 

Usually,  for not too rapidly varying functions and not functions which have sharp jumps. 

That is true. 

That  means  smooth  looking functions  generally  have  this  behavior  that  the  higher  order 

derivatives when multiplied with higher powers of delta x would actually become very small 

terms. And that is the hope with which we are actually saying that the leading error term is 

going to essentially define the character of the modified partial differential equation. So we 



can say that we will just retain 1 term on the right hand side and try to see how the new 

partial differential equation looks like. 

However,  we need  to  understand one  thing  that  if  you  are  going for  a  modified  partial 

differential equation involving more higher order derivatives, that means ideally,  you may 

need to change your boundary and initial conditions, because you are changing the order of 

the equation. But in principle, we do not do that. We impose suitable boundary and initial 

conditions keeping in mind the original partial differential equation. 

That is  the Spirit.  And we often would run out  of even possibilities  of setting sufficient 

boundary conditions,  if  we were to consider the higher order derivatives  of the modified 

partial differential equation. So keeping that in mind, we go about deciding the boundary and 

initial conditions as per the original non English. So we will discuss more about modified 

partial differential equations in the next lecture. Thank you.


