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Numerical Solution of Unsteady Heat Conduction (Parabolic PDE) (continued) 

 

We continue our discussion on parabolic partial differential equation. Last time, we learned how 

to do the Von Neumann stability analysis and we applied that technique to do the stability 

analysis of the FTCS scheme for discretizing parabolic partial differential equation.  
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So, in this lecture, we will have a look at some of the simulation results, and you will also 

discuss that the outcome of the stability analysis taught us that the diffusion number should be 

restricted to a value of half at the most.  So, if you maintain that stability limit, then how the 

simulation results look like and if you are not maintaining it, then what is the outcome. So, 

before we proceed further with these calculations, let us try to recapitulate the FTCS scheme.  

 

So, we were discretizing the equation the del u del t is equal to alpha del u del x square. So, this 

equation when we discretize it with forward time central space discretization then we come up 

with a discrete form like this. And we need to take note that the scheme has first order accuracy 

in time and second order accuracy in space by virtue of the schemes that we have used to 



discretize the time and space derivative terms. So, if we were to write the order of accuracy, you 

could write it this way.  
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So, here we are looking at a time step as well, in addition to the space steps, which we did not 

see in elliptic equation, for example, in elliptic partial differential equation. When you were 

doing a multi-dimensional problem, which involves both x and y directions, and if we were using 

CD2 scheme to discretize, then the order of accuracy will be shown like this. So, there is no 

temporal dimension or time dimension in Laplace equation.  

 

So, the accuracy will be expressed only in space. Why? For follow up for a parabolic partial 

differential equation, you will be seeing both time step as well as space steps indicated in the 

order of accuracy representation. Now, coming to the problem at hand which we are trying to 

solve numerically through a simple computer code. So, here we have a one dimensional domain 

in x.  
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Let us say the length of the domain L is equal to unity and we have put in 100 grid points 

spanning this domain. So, you can find out the delta x which will be produced as a consequence 

and then we have imposed certain initial condition as well as boundary conditions at the end of 

the domain. So, you can see how the initial condition and the boundary conditions have been 

specified here in this green block.  

 

So, initial condition says that obviously at t = 0 that is what we mean by initial condition u is 

equal to 0 everywhere apart from the boundaries that is why we use less than here, we do not put 

a less than or equal to because if we were to put equal to then we would reach the boundaries. 

So, any other point which lies a little away from the boundaries and covering all of the internal 

domain has a value of u = 0. That is the initial condition you are imposing. And what are you 

imposing at the boundaries, you are imposing as u = 1 at x = 0 and u = 0 at x = 1.  

 

So, you are imposing Dirichlet boundary conditions at the ends of the domain. So, these things 

have to be kept in mind when we look at the simulation results. So, we are now starting to do the 

calculations over these 100 grid points apart from the boundary points of course, because that is 

where the values remain fixed and provided to you in the form of Dirichlet boundary conditions. 

So, you are not having a mixed Dirichlet-Von Neumann problem here.  

 



So, if you were to have a Von Neumann condition at some end then the value at that boundary 

would have to be updated with time. So, here it does not arise because you have Dirichlet 

boundary condition. Now, having said that if you look at the solution here in the plots you are 

plotting the x coordinate along the x direction, x coordinate varying from in terms of the grid 

points. Let us take it in the form of grid points.  
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And then on the y axis you have the u, value of u represented and this is how the solution looks 

after 10 steps of calculation. So, each calculation step as we remembered would involve this 

discrete equation, this discrete equation will be solved at all the grid points i’s  between 2 to 99. 

So, leaving apart i = 1 and i = 100, which are the boundary points at all intermediate points, you 

would be applying this discretized form of the equation and updating the value of u.  

 

So, as you keep updating from the first step to the second step and so on. Based on the initial and 

boundary conditions, you would be able to reach this distribution after 10 time steps. Of course, 

remember that this distribution is true for this discretized form of the equation. So, if you were to 

use different discretization schemes for approximating the time derivative and the space 

derivative.  

 

Then the solution may look slightly different from this because the order of accuracy would then 

change. So, that is something that we have to keep in mind. So, ideally, one could try comparing 



the discretized equations solution quality by comparing with an analytical solution if available. 

So, in case that is available, then you have the convenience of comparing incidentally it is 

available for this particular partial differential equation that we are handling.  

 

We will probably discuss it in a later lecture. So, having said that for now, we are concerned 

more about how the solution looks like as far as the FTCS scheme is concerned.  
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So, at the end of 10 steps, what you notice is that of course, the first grid point will always have 

the boundary value. Because it is set at that condition, also the last grid point will have the other 

boundary condition. And what is noticeable is that a number of grid points close to the left 

boundary have started gaining value because they are in close proximity to the left boundary 

value.  

 

While many of the remaining points are lying silent as though they have not responded yet to the 

present presence of the left boundary value. So, it takes time for the solution to evolve. And that 

is why we say this is a transient problem. That means, the solution develops with time. Now, if 

you move to more number of time steps. Let us say one order higher at 100 time steps the 

solution looks what like, like what you see on the right hand graph.  

 



Of course, again the grid points are indicated along x direction and the value of u along the y 

direction. And now, you see many more points I have started responding to the presence of the 

value of u = 1 on the left boundary as though the message is gradually diffusing into the rest of 

the domain. In fact, that is how it works because the second order term on the right hand side is 

indeed a diffusion term.  

 

It is taking care of diffusion of the value of u from one boundary to the other. That is how it 

works. Now, if we look at the stability aspects of the solution till now, the 2 time steps solutions 

that we have looked at, they do not seem to show any kind of awkwardness. In the sense that 

some of the properties, which we expect from this kind of a calculation that the values are 

expected to be bounded between the maximum and minimum that you have in the boundaries.  
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So, that is what you are seeing that some of the values are getting closer to the left end, while 

many of the other values are lying close to the right end boundary condition, but no value has 

overshot any one of them either on the positive side on the negative side. And that is how it is 

expected to be over here. And they are evolving with time because there is a time derivative in 

the governing partial differential equation.  

 

So, that time derivative is actually taking care that the solution evolves with time and also the 

solution diffuses in space, because you have a second order derivative in u standing on the right 



hand side of the equation. So, the solution seems to be reflecting the physics. Now, we said 

earlier that we have hundred grid points and the length of the domain is unity and so on. For this 

simulation, we have chosen a value of alpha which is a diffusion constant as .0002.  

 

You could have other values of alpha reflecting a particular physical situation, but having chosen 

the alpha and the delta x defined by the grid points et cetera. We finally get a d, value of d = 0.5 

by the delta t that we have chosen. Which means, it is like saying that d which is defined as alpha 

times delta t by delta x square has been set at 0.5 with suitable choice of delta t after you have 

already said the values of alpha and delta x.  

 

And you know that going by the Von Neumann stability analysis this was a limiting value of d 

for stable calculations. So, we are keeping ourselves bounded by that definition and since we are 

handling a linear partial differential equation. Von Neumann stability analysis should be guiding 

us well with the stability condition. Until now, the way the solution is proceeding seems to be a 

stable solution.  
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If we go further in time, we can look at solutions at much later time steps. So, this is 1000 time 

steps from the beginning. And now, you see that there is a wider diffusion of the value of u = 1 

from the left end of the boundary towards the right end of the boundary. It has almost reached 



close to the right hand boundary. However, you can see a nonlinear nature in this curve, which 

means that it is yet to reach the steady state linear distribution.  

 

Now, why do we say that at steady state, we expect a linear distribution? Now, if we look back at 

the governing partial differential equation, as long as things change with time, we would have a 

contribution coming from the left hand side of the equation, which influences the solution of u. 

Now, at very, very long times, if you are really approaching a steady state or an equilibrium 

state, you would not be changing with time anymore.  

 

That means, at each and every grid point, the time derivative will approximate towards 0 as it 

does so, you are actually getting closer to the condition that the second derivative of u goes to 0 

and this basically becomes an ODE now because you purely becomes a function of x. And for 

that we know that it has a linear form if you integrate this equation twice, you will have a linear 

form for u.  

 

And then if you impose the boundary conditions on the left and right ends of the domain, then 

you will be able to get the distribution of u and at fairly large time steps. That is what happens 

you get a linear distribution. So from the nonlinear pattern that you are seeing 1000 time steps, if 

you move the solution further, a few thousand steps more you reach. The solution at 5000 time 

steps.  

 

You can figure it out if you watch very carefully that there is still non linearity here, but the non 

linearity has weakened up. Here, by nonlinear I am meaning the non linearity of the curve, there 

is no non linearity in the governing partial differential equation, we have to understand this 

aspect carefully. So, what we mean by this is that this straight, this is not a straight line. So, this 

is not representable by a formula of this kind, this own whole good here. 

 

So, non linearity is meant in that sense, but, there is absolutely no non linearity in the governing 

partial differential equation and what have we achieved here. Here, of course, we have achieved 

a linear distribution of u that is because asymptotically this condition has been reached. And 



now, this governing partial differential equation has actually reached a condition where it can be 

treated as an elliptic partial differential equation.  

 

We have seen this earlier when we discussed about Laplace equation in one dimension, that there 

would be a linear distribution of the dependent variable in such a case. So, all through we saw 

that the solution remained stable, well behaved and bounded by the boundary values. So, we 

have seen a case where we have looked at the solution of initial boundary value problem that 

means, we started the problem from initial condition and right from t = 0 the boundary 

conditions were specified. 

 

And we time step the solution over it a large number of time steps maintaining the boundary 

conditions all through till we reached a steady state solution and all through the solution 

remained well behaved and stable, because we had satisfied the constraints imposed by the Von 

Neumann stability analysis. And the constraint was that d would have to be kept less than equal 

to 0.5. And we chose a value of 0.5 for to d precisely and as expected, the solution remained 

stable.  
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What if we did not go by the Von Neumann stability analysis outcome and we chose a d value 

which was other than 0.5 and on the wrong side. In the sense that we end up taking a value of d 

which is greater than 0.5 and that is precisely what is shown over here. So, we have to note that 



we have taken a value of d which is marginally larger than 0.5. It is not very significantly large, 

larger than 0.5, but it is certainly more. So, with a value of 0.55. Let us see how the solution 

emerges. So, other things are all remaining the same.  

 

So, we have the same 100 grid points and unit length and alpha values as we did in the previous 

case. However, we have chosen a delta t in such a manner that finally d overshot the limit of 0.5. 

That means, we are trying to time step the solution more rapidly than what is prescribed by the 

Von Neumann stability analysis. So, what we have done essentially is chosen a slightly larger 

delta t then prescribed and that whether that choice finally influences.  

 

The solution adversely is or not is what comes out from these plots. So, when we go to 10 time 

steps from the initial condition. We see that we are able to maintain the boundary condition on 

the left, on the right because they are anyway fixed at whatever values we have chosen. But, 

here, if we notice there are certain oscillations which are getting produced. However, the trend 

broadly remains the same as it was for the previous case of d = 0.5.  

 

Now, if we take the solution a few time steps further. So, just 20 time steps and then we notice 

that many, many more oscillations have now started coming into the solution and the oscillations 

are becoming stronger. That means the jumps between consecutive grid point values are 

becoming larger and larger. So, this certainly is a signature for instability or signature of 

instability that means, you are seeing some oscillations in the solution.  

 

If these oscillations become larger and larger and larger and so on, and grow unbounded then 

finally, they can make the solution. So, erroneous that the solution will lose any meaning or 

significance and also the numerical calculations will go out of bounds. And therefore, finally the 

computer code will crash producing not a number kind of situation. So, what would be the 

distribution of u over the domain, a few steps later in time, we have just reached 100 time steps 

and it looks very disturbing.  
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So, it may still be satisfying the boundary conditions, but what is happening in the in-between 

grid points is very worrying and if you notice the kind of values that have been achieved on the 

left end of the domain which is indicating the values of u.  

(Refer Slide Time: 21:52) 

 

You have very, very significantly large values which have no connection with the boundary 

values. So, u on the left end was supposed to be 1, on the right end is 0 and you are producing 

values of the order of few tens of thousands in between. Which means certainly the solution is 

becoming increasingly erroneous and going out of bounds. If you were to run the solution for a 

few more time steps, it would finally crash.  

 



So, what it proves is that Von Neumann stability analysis could predict well in advance that this 

would happen with the wrong choice of spatial steps delta x and delta t for a given value of 

diffusion constant. You may end up producing values of d which are well in excess of 0.5 for 

FTCS kind of discretization. And then if you are choosing to use FTCS for discretizing your 

governing equation, then this choice would lead to unstable calculations.  

 

So, what you can see in the above plots is a typical indication of an unstable calculation. So, the 

condition that Von Neumann stability analysis derived for us bounding the value of d for FTCS 

scheme is called as conditional stability. That means, solution using FTCS algorithm will remain 

stable subject to the condition that you choose a value of d which is less than equal to 0.5. So, 

such conditions, when found through Von Neumann stability analysis would be termed as 

conditional stability.  

 

So, if you are having unconditional stability for certain schemes, then such specific conditions 

will not come up at all. So, you will be able to show that the amplification factor in such cases 

would remain less than equal to 1 under any circumstances. If such is the situation, you will call 

such a situation as unconditional stability. That means, it will remain irrespective of your choice 

of delta x, it will remain stable irrespective of your choice of delta x and delta t and alpha. 

 

So, conditional stability is stability of the scheme under the given choice such that you are able 

to satisfy the constraint. So, there is an issue of satisfying a certain constraint. If you satisfy the 

constraint, then the scheme will produce stable solution. So, we got to see through this numerical 

example, that it is indeed like that, that if you are satisfying the constraint, then it produces a 

stable solution.  

 

The moment you violate the constraint, it will end up producing an unstable calculation. So, we 

saw an instance of conditional stability.  
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Now, if we were to plot the amplification factor for the two cases that we just looked at, it will 

show you some very interesting trends. Remember that you have to satisfy this condition for the 

amplification factor, where amplification factor is defined in this manner. So, when we chose d = 

0.5 in the first example, how would the amplification factor vary. What the entire range of phase 

angles.  

 

So, what we have plotted along the x axis is phase angle. We remember that this phase angle will 

vary between 0 to 2 pi. So, what we have plotted is in degrees. So, that is the x axis and what we 

have plotted along the y axis is G. So, that is for both the graphs that we are seeing in this slide. 

So, if we follow the plot for the d = 0.5  case, the maximum positive value of G that we see is 

attained for theta = 0 and for theta is equal to 2 pi. These are the two points.  

 

0 degrees and this is 2 pi which is 360 degrees. And the maximum negative value is minus point, 

-1 which is reached at 180 degrees or pi. So, this is the behavior of G. The amplification factor 

for d = 0.5  which produced the stable calculations. So, this distribution certainly satisfies this 

constraint that mod G should be less than equal to 1 because mod of -1 is one which satisfies the 

constraint less than equal to one.  

 

And of course, on the positive side, it automatically satisfies. How about the d = 0.55 case. So, 

we have satisfied mod G = 1 on the positive side because the maximum values again are at 0 and 



360 degrees. But we have a problem area, here which is in circled in blue and that is where it has 

gone below -1 that means, it has become less than -1. There is a portion of the curve which has 

dipped below -1. So, if it has gone below -1 may be around -1.2.  

 

So, mod of -1.2 will produce 1.2 which is greater than one. So, 1.2 is certainly greater than 1 and 

it does not satisfy the condition mod G less than equal to1 and that is where the problem is. So, 

when it comes to those phase angles, the solution produces erroneous results. And as we 

compute repeatedly over different time steps, these errors which are occurring from that phase 

angle range would corrupt the result more and more and more.  

 

So, as solution proceeds, you will see more of these oscillations coming in the solution that you 

produce. So, we have to be very careful about this that we strictly follow the mod G less than 

equal to one condition. If we do not do so, that means if the finite difference form is failing to do 

so. For improper choice of parameters; whenever conditional stabilities coming into picture. 

Then we will fail to produce stable calculations.  

 

In a later lecture, we will talk about how implicit schemes produce unconditional stability and 

from stability perspective, they are better choice then explicit algorithms because explicit 

algorithms most often would have conditional stability. Thank you. 


