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Numerical Solution of Unsteady Heat Conduction (Parabolic PDE) (continued) 

 

We continue our discussion on parabolic partial differential equations.  
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In the previous lecture, we had started discussing about Von Neumann stability analysis, in 

order to test a finite difference scheme to ensure that it is stable, before we use it in order to 

solve parabolic partial differential equations.  

 

So, we had already noted, 1 or 2 initial points that we would take the finite difference form of 

the partial differential equation and expand it in a Fourier series and each of the Fourier 

components would comprise of an amplitude term and an exponential term with a complex 

argument which takes care of the spatial location of a great point. Additionally, since we are 

decoupling space and time.  

 

When, we represent it through the Fourier components in this manner. Therefore, each 

component of space and the time would remain in a decoupled manner, in the Fourier 

representation. Now, an important aspect is that when we are looking at linear partial 

differential equations, the various solutions can be linearly combined to generate newer ones 



and therefore, taking just one component of the Fourier series should be sufficient in carrying 

out the Von Neumann stability analysis. 

 

So, instead of taking a large number of terms or an infinite number of them, we just pick one 

and try to study the stability behavior, using that 1 term and this simplifies the whole process 

in a very big manner. Now, linearity of the governing partial differential equation is of course 

a general requirement for carrying out the Von Neumann stability analysis. So, let us say that 

if you are not handling a linear partial differential equation.  

 

Then how would you be able to apply the stability analysis at all. So, the answer to that 

would be that you have to find a way to linearize the nonlinear partial differential equation in 

some manner before you can apply the Von Neumann stability analysis. But, if you do, then 

you should be in a position to apply it, at least locally. This is one aspect. The other aspect is 

that it is not possible to include the effect of the boundary conditions when you do the Von 

Neumann stability analysis.  

 

So, when you are looking at the finite difference scheme in its discrete, the finite difference 

representation of the partial differential equation, then what you are essentially doing is you 

are looking at its form as the (()) (03:15) way it would be applied for the inner grid points, the 

internal domain grid points. So they do not show the influence of the boundary grid points. 

So, keeping all these points in mind.  

 

Let us look at the mathematical representation. Now, so that we can apply Von Neumann 

stability analysis and try to understand that whether the forward time central space 

discretization which we learned about last time is actually a stable discretization and is it 

unconditionally stable, or it is stable under certain conditions. That is something that should 

come out from the stability analysis.  

 

Now for doing the stability analysis, some of the ideas that we already came across when 

doing the modified wave number approach, also come up over here. So when we represent 

the problem. Here we have one spatial dimension of the problem because we are handling the 

governing partial differential equation of this form. So it only has one space dimension that is 

x.  

 



And let the domain have a length L along the x direction, starting from the (()) (04:33) 

leftmost point x n ought to the rightmost point x N and so, these are the geometrical locations 

or coordinates of those points. And you could easily convert them into grid coordinates, 

because a certain point i would have a geometrical coordinate of x i, which is given by this 

ratio L by N times i.  

 

So, L is the length and of course, N is the number of intervals that you have through the 

discretization. That means the number of grid spacing’s that you have in the domain. So what 

does that give you as a ratio it essentially gives you, delta x, which is the spacing between 2 

adjacent grid points. So, in order to get x i, what you essentially do is, you multiply, delta x 

by the grid location i.  

 

So this is something that we also did while discussing about the modified wave number 

approach. Now coming to the way we represent u, i, n. So you remember, then when we did 

the modified wave number approach. We just had the spatial dimension to be tackled and 

therefore, we had written it as this. This was the way we did it over there, because only space 

had to be tackled. Here you have both space, as well as time to be tackled.  

 

So what we have done is we have defined the so called amplitude term associated with small 

u, the amplitude, we call as capital U and it has a superscript n. So it essentially means the 

amplitude of U at the nth time interval or time level and that is multiplied by the spatial part 

of the function, which remains the same as what you did in the modified wave number 

approach. So it is e to the power of capital I k x i, but of course capital I stands for under root 

-1. 

 

Now, we remember that x i could be represented as a product of delta x into i. So, this is how 

we represent u, i, n. Similarly, you could represent the u at other spatial with points and other 

time levels. For example, u i+1 n+1 would be represented by the amplitude term, which will 

be corresponding to the n+1th time step and the exponential term, which would now have a 

grid coordinate of i+1 and that would be multiplied by the grid spacing delta x.  

 

So, that is how u i+1 n+1 would be represented periodic over (()) (07:53) the length L.  
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We have emphasized on the amplitude, corresponding to the temporal part of the time 

interval part and the exponential term, which has a connection with space. So, if we look at 

these as temporal components and spatial components from the Fourier term. Then what is 

going to be very significant for us is to track what is called as the amplification factor as far 

as the temporal component is concerned.  

 

So, we are looking at the amplitude term at 2 consecutive time intervals. One is the nth time 

interval. The other is the n+1th time interval or step. And we are trying to take a ratio 

between the amplitudes for these 2 consecutive time steps that defines what is called as an 

amplification factor. So what we are trying to figure out is that whether the value of capital U 

is growing with time, or decaying with time, or remaining the same with time through a ratio 

of this kind. So, as we do that we remember of course, the expressions for u i n and u i n+1.  

 

So, as you remember the spatial terms would remain the same, because they are 

corresponding to the same grid point i. But, the amplitude terms get changed, because they 

are the ones which carry information about the time. Now, it is important for us to track this, 

because when we are solving the partial differential equation through a finite difference 

equation, we are expanding the finite difference equation in a Fourier series.  

 

When we try to understand its stability behavior, through Von Neumann stability analysis and 

we are trying to figure out whether this amplification factor is decaying or growing with time 

and that would essentially ensure whether the numerical algorithm actually behaves in a 



stable manner, or not because if there is a growth in this capital U which stands for the 

amplitude of the solution. 

 

Then the solutions will become larger and larger in amplitude and then become extremely 

large and then become unbounded in course of time as you (()) (10:37) the solution and that 

is a recipe for instability and we would like to avoid that at any means. When, we are trying 

to discretize the partial differential equation through a finite difference approximation. So, the 

finite difference approximation should be such that the amplification factor remains bounded. 

 

And it satisfies a very important property that it is modules should be less than or equal to 1. 

Another important point that we would like to mention over here is that when we look at the 

stability aspect, we are looking at amplification factor which is just carrying information 

about 2 consecutive times it carries no explicit information about the spatial distribution of 

the solution.  

 

Though, it comes into the expression for U i n+1. Sorry, U n+1 by U n ratio implicitly. But, 

there is no explicit representation of the spatial distribution. So we are, as though, just 

worrying about the time dependence of the solution and there is no space dependence 

explicitly seen in the amplification factor. So, whatever is the amplification factor, we can 

say that it applies identically over the entire spatial domain.  

 

It is again important to note that for a stable solution, the absolute value of G has to be 

bounded for all values of phase angles. Now, we recall from our previous discussion on 

modified wave numbers, the definition of phase angle. So we said that when we multiply the 

wave number by the grid spacing. So if you call the wave number as K as we did before and 

you multiply it with the grid spacing delta x, then you get theta, which we call as the phase 

angle and we know that.  

 

So, as you do that the phase angle varies from 0 to 2pi. Now, if you look at the distribution of 

a function over the length L. Then we discussed earlier that you could have very large 

wavelength waves, as well as very short wavelengths accommodated within this grid. So, you 

can see the grid spacing delta x as given by L by N, where N is the number of intervals and 

for the shortest wave, you will have a wavelength equal to 2 times delta x.  

 



So if you track the shortest wave that can be captured, it will be looking like this. So that 

covers a length of 2 times delta x. So, that would correspond to the highest wave number, 

which we can define as k max and it can be worked out that will be equal to pi by delta x, so 

that is the highest frequency wave that you can accommodate spatially within this domain. 

So, this is the spatial component of the Fourier term.  

 

So, the spatial component part of it is already known to us from our previous discussions. 

However, we were not aware about the temporal component so with the discussion on 

temporal component as well as spatial component combined, we now have a better 

understanding as to how each one of the terms like u, i, n would be represented in a Fourier 

sense so that we can now launch into the activity of performing the Von Neumann stability 

analysis.  

 

And for doing that our candidate scheme is the FTCS scheme. So, we will try to write down 

the discretized form of the FTCS scheme once more when we carry out the Von Neumann 

stability analysis. 
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We remember that this could be written as. Now here, d stands for diffusion number, which is 

nothing but a combination of the diffusion coefficient alpha and the time as well as space 

intervals. So, it is alpha delta t by delta x square. So, this equation, of course, is obtained from 

the original form of the discretization, which is this by rearranging the terms. So, we write 

down the original form once again. 

 



So that it is convenient for us to connect between the 2 forms. So, for the stability analysis, 

this is a more convenient form as we will see soon. Again, we recall that this is an explicit 

scheme, because you have only 1 term at the n+1th time in step to be solved and we know 

that all u i’s are known at nth time step. Now, let us try to use the Fourier representation for 

each and every term.  
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Initially, we will write the k times delta x times, as they occur in the basic definition. Later 

on, we will replace k times delta x by theta that is the phase angle. So, if you write it down 

term by term. So, this is nothing but x i+1. This completes the substitution. Now, we can 

have some common terms. Let us try to write them, which can be put outside the brackets.  

 

So, we notice that on the left hand side also, you have this e to the power of I k delta x i. So, 

this and this term can cancel out. So let us put it in a simplified manner like this. 
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And now, additionally, let us put it in terms of the phase angle in the next step. So, as we 

mentioned earlier that we can replace k times delta x by theta, which is the phase angle. So 

then you have this equation and we defined amplification factor, G. So, let us bring that here 

is equal to U n+1 by U n. So you have G is equal to 1 + d into e to the power of I theta + e to 

the power of -I theta -2, this is the expression. Now, we recall the Euler formula.  
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So, we have e to the power of I theta is cos theta + I sine theta and then e to the power of -I 

theta is cos theta - I sine theta. So, using these 2 equations, you can sum them up so that you 

have an expression for e to the power of I theta + e to the power of - I theta because that is 

what figures in the G expression and that will give you 2 cos theta.  

 

So finally, if you look at the expression for G, what you have is G is equal to 1 + 2d cos theta 

-1, let us write it as 1 - 2d into 1 - cos theta. So our idea was to check whether mod of G 

remains bounded. Through this condition that it does not ever exceed 1. So we need to check 

whether this expression satisfies that condition. So, in order to do that what we really need to 

check is that whether it satisfies this inequality.  
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If you look at it as 2 parts, then one part is that let us say, part A and part B. So, let us put part 

A as 1 - 2d into 1 - cos theta. We need to check whether it is less than equal to 1. The other 

part is that whether 1 - 2d into 1 - cos theta is greater than or equal to -1. These are the 2 

things we need to check. Now, if you think about all possible values that cos theta can attain 

between 0 to pi, rather to 0 to 2pi. 

 

It will vary between - 1 to 1. Now, if you substitute these values, you will always find that let 

us say if you substitute the value of -1 for cos theta, what do you have you have 1 - 2d, into 1 

- -1 which is 1 - 2d into 2 and that is, 1 - 4d and we have to recall that d > 0. It is a diffusion 

number which is essentially dependent on the diffusion coefficient which is always a positive 

number times delta t, which is a positive number divided by delta x square which is also a 

positive number.  

 

Therefore, the this, the value of d would always be greater than 0 and therefore 1 - 4d will 

always be less than 1. If you look at the other extreme that is when cos theta is equal to 1. 

Then you have 1 - 2d into 1 - 1, which essentially gives you 1 and therefore it also satisfies 

the inequality, it is less than equal to 1, which means there is absolutely no issue in satisfying 

the criteria A, so, one of inequalities.  

 

So, we have to now question, the second inequality, whether it is satisfied for any value of 

theta, like the criteria A did. So, for checking that let us do some calculations.  
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So for the inequality B that has tried to put in the values possible values of cos theta and try 

to figure out what how it works. Now the main issue is, you have to ask the question, what is 

the max negative value of the expression, 1 - 2d into 1 - cos theta and that would mean that 

we are trying to figure out what is the maximum negative value of this bracketed term. Now, 

the maximum negative value can occur when you have a -1 coming in from cos theta, 

because that could make this term equal to -4d.  

 

So that can have the maximum negating effect on 1 and our condition is that 1 - 4d has to be 

greater than -1. That means, at no point can d be that big that this expression becomes lower 

than -1, or smaller than -1. So, what is the limit then? The limit is this and therefore d should 

be less than equal to half, so that is the condition that we are getting from the inequality B.  

 

So what does this mean, if we just think about the expression for d, it is this and that should 

be less than or equal to half. 
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It means that for a given problem, the diffusion coefficient will have a certain fixed value. 

We cannot control that. But what we can control is our choice of delta t and delta x. So, we 

have to choose the delta t and delta x rationally so that you always end up satisfying this 

condition. Now, you can boil it down further to saying that well, I have a certain length and I 

have decided to have such and such grid spacing.  

 

So in that case, you are also facing fixing up the value of delta x. So what is left for you to fix 

up then is delta t, which would be fixed up by using a condition looking like this. So, your 

delta t should always be less than equal to delta x square by 2 times delta, 2 times alpha. That 

would be the maximum delta t, so the t max could then be defined as equal to this. If you 

exceed it, then the solution will become unstable.  

 

And that is something that we need to always avoid. So, how can you make out that the 

solution has gone unstable? Of course, if you plug back this value of delta t which is 

exceeding this value, then you will obviously be able to get mod G greater than 1 and that 

will make the solution unstable. Now how an unstable solution would look like, is something 

that we will discuss later. So we close our discussion here today.  

 

We look at some more results on parabolic partial differential equation and especially 

interesting results on stability in the next lecture. Thank you. 


