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Lecture - 14 

Taylor Table Approach for Constructing Finite Difference Schemes (Contd.) 
 

In this lecture, we begin by looking at the CD4 formula that we derived last time, and 

we continue our discussion. Today we will additionally discuss about the wave 

number approach. 

(Refer Slide Time: 00:42) 

 

Last time, we had looked at the derivation of the CD4 scheme for first derivative. So 

just to recapitulate, towards the end of the last lecture we had even formally shown 

that why we have been able to achieve the fourth order accuracy formally through this 

approach through the Taylor table based calculations that we showed. 

 

And we remember that this particular column which comes from the iv
if  had yielded 

a 0 because all the terms summed up to zero when we substituted the values of the 

coefficients a1, a2, a3 and a4 in the associated expressions in the iv
if  column. While 

the v
if  column elements when they were summed up with the values of the 

coefficient substituted, which you can see here, so this is a1, a2, a3 and a4 respectively. 

 



And the other coefficients are essentially coming from these numbers which you 

have. So you have 1 by factorial 5, which is 120. You have 2 to the power of 5 by 

factorial 5, which is 32 by 120, and so on. And then you find that this does not sum to 

0. So this is a nonzero number what you produce over here. And therefore this 

column, these column entries would lead to the leading order truncation errors. 

 

And that we showed it to be of the order of (Δx)4. Because we said that we have (Δx)5 

terms in the denominator and 1 by delta x coming from the coefficients and therefore, 

ultimately you will be left with fourth order accuracy. So we have been successful in 

obtaining a fourth order accurate central difference formula using a 5 point stencil, 

which we had set out to achieve. 
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Just to recapitulate, from the Taylor series approach, what we learned was that, this is 

a method by which we can quantify the formal order of accuracy of a scheme through 

the truncation error based approach. And we also learned that the accuracy is 

essentially linked with mesh refinement. So if we are defining the mesh of the grid 

that we are using for calculations by a factor of 2, it can improve the accuracy of a 

second order finite difference scheme fourfold. 

 

While if we are using a fourth order accurate scheme a twice fine mesh would 

improve the accuracy 16 times and that is the reason why one would actually like to 

explore higher and higher order accuracies in a formal sense and try to apply them in 



grids of different refinements and trying to look at how the errors reduce and accuracy 

gets enhanced. 

 

So even on a relatively coarse mesh, the CD4 scheme is expected to do comparatively 

better or quite significantly better than the CD2 scheme. So that is primarily the 

motivation behind looking for higher order accuracy. Well, that is one possible way 

by which we can assess accuracy of finite difference scheme. But that is not the only 

one. 

 

There could be an alternative method, which often turns out to be more effective than 

the formal order of accuracy, which we do by the Taylor series approach. And that 

approach is known as the modified wave number approach. And what we try to assess 

over here is that how well is a finite difference scheme doing in differentiating 

sinusoidal functions which could include both sine as well as cosine terms. 

 

Now the motivation behind doing such an exercise would be that we are all aware that 

Fourier series is a very powerful tool in representing arbitrary functions, and we often 

come across very complex functional forms where the Fourier series approach is very 

robust and sometimes the most effective way of representing such complex functional 

forms. 

 

And then if we have a finite difference scheme doing a good job in differentiating sine 

or cosine terms that occur in Fourier series, then we can be rest assured that they 

would be appropriate in application of finite differencing of complex functional 

forms. 

 

And that basically gives the motivation of pursuing the modified wave number 

approach where we try to look at the suitability of a finite difference scheme in 

differentiating sinusoidal functions. So with that motivation in mind, we try to look at 

this alternative approach for assessing accuracy of a finite difference scheme, which 

we are naming as the wave number approach. 
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Before we do more detailed discussions on what the wave number approach actually 

means, let us look at some typical waveforms and briefly relook at some of the facts 

that we know about such waveforms so that we can formally address the issue of the 

wave number approach. Here in the diagram we have a certain domain length L that 

we have specified along which we can see waves disposed. 

 

The blue colored wave completes two full wavelengths over that domain while the 

green colored wave ends up having many more wavelengths. Incidentally, both the 

waveforms are having integer number of wavelengths accommodated within the same 

length that is L. Now the green wave has a very short wavelength while the blue wave 

has a comparatively long wavelength. 

 

So what it means is that if you have a minimum length scale defined here based on 

which you can accommodate the shortest possible wave, then you are essentially 

defining a bound. That means, you cannot express a wave which has a shorter 

wavelength than the one that we have represented over here provided that this interval 

is defined. 

 

So here what we are trying to say is that if you have a domain length L which you are 

representing in the form of the small interval Δx times the number of intervals that 

you have then that way you are also defining how short the wavelength can get. 

Because you cannot have a wave, which has a wavelength more than 2Δx on such a 

discretized domain. Now we have a wave number associated with these waves. 



 

The blue and the green wave would have very different wave numbers associated with 

them. So by definition, we say that the number of wavelengths that can be 

accommodated within a length of 2π would give you the wave number. So by 

definition if you have a wave, a sinusoidal wave of wavelength λ then the wave 

number of such a wave will be given by 2π/λ. 

 

Now when the interval is not 2π in length, but rather some other length like we are 

calling as L over here and we are seeing that small n number of wavelengths can be 

accommodated within such a length, then obviously, the λ corresponding to such a 

wave will become L/n. And this n is a general quantity. It can be applicable for a long 

wavelength wave or a medium wavelength wave. 

 

Or could be a very short wavelength wave as well. So n is a kind of a variable. That 

will essentially mean that you end up producing waves of different wavelengths by 

tuning the value of n. If you combine these two equations, the equation for λ here and 

the equation of wave number that we already defined earlier, then we end up getting 

an expression for wave number of this kind, which gives you k is equal to 2πn/L. 

 

And now we have to decide what is the range of values of n that we can accommodate 

so that the necessary condition is that whichever wave we accommodate in the 

process within this domain L, the wave should end up completing integer number of 

wavelengths within the domain length L. It cannot be a portion of the wave left at the 

end of the domain which is not completed. 

 

So if you look back at the picture on top, you can very clearly see that both the blue as 

well as the green colored waves have ended up satisfying that condition. You could 

have more number of waves of intermediate wavelengths which could be coming in 

between based on how the value of small n changes. Now coming to the range of 

values that we have for small n, if small n is equal to 0 that yields the condition that k 

will become equal to 0. 

 

Now if k is equal to 0, that means the function is not showing any wavy nature 

whatsoever, it is just a constant. Whereas, if n is equal to 1, then you will end up just 



filling up the entire length L through one wavelength. That means, if this is your L, 

then you will see a sinusoidal wave going like this and filling up the domain which is 

a fairly large wavelength wave. 

 

Now gradually as you keep increasing n and bring it to a large value, if the capital N 

value is a large value than N/2 is also quite large. In that case, you will have waves 

with much higher wave numbers, which will look closer to the green one that you 

have. In fact, the green one satisfies the condition that n is equal to capital N/2, 

because the green one is the limiting case where one wavelength is accommodated 

within 2Δx length. 

 

That means, half of the wave gets accommodated within the smallest length scale that 

is available in the discrete space, which we are offered referring as the grid spacing, 

like the way we did it on a finite difference mesh, for example. So this was the grid 

spacing that we were talking about when we did the finite difference calculations. So 

it is a very similar sense that we are trying to convey over here. 

 

So if this length L was discretized using a set of grid points, then Δx is the grid 

spacing that we have. And you can accommodate the shortest possible wave which 

has a wavelength of 2Δx on such a grid. So we are just reemphasizing this point here 

in the box right up here that the shortest wave has a very highly oscillatory nature. 

And this is the shortest way we can accommodate within the given grid with this 

wavelength, 2Δx wavelength. 

 

And that gives you the highest value of the wave number kmax. Similarly, we said that 

for n is equal to 0, we have no functional variation. There is no modulation that we 

see in the functional value in space. So these are the two N’s of the spectrum. Now 

this concept will be very useful when we develop the modified wave number 

approach for assessing the accuracy of a finite difference scheme. 
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We will just try to look at a few points before we go over to the wave number 

approach. We have understood that a large number of grid points will be required 

when we try to capture high frequency sinusoidal function within a discrete space, 

where you have a certain length discretized using large number of grid points. 

 

And then if you are trying to differentiate such a wave function, then you also of 

course need very accurate differencing methods. When you have a given set of grid 

points or grid resolution, you need to assess that whether the finite difference scheme 

that you are using is capable of capturing the high frequency part of the sinusoidal 

function effectively. 

 

Because it is expected that the low frequency portion will be captured with more 

efficiency because they are associated with slowly varying functions while the high 

frequency part is associated with rapidly varying functions and capturing them 

through the difference operations may be very challenging. 

 

And therefore, the accuracy of the scheme from the wave number approach would be 

to focus on this that how effective is a numerical scheme in capturing high frequency 

oscillatory behavior of functions. And we need to remember that we have in the 

earlier part of this course discussed more on linear differential equations. But very 

often in fluid mechanics we have to handle nonlinear differential equations. 

 



Very often they are also going to be of partial differential nature. And it would be 

found that such differential equations contain a large number of frequencies. They 

could be several frequencies at least. And therefore, the finite difference scheme 

should have enough capability to resolve the different frequencies which would be 

there in the solution with sufficient efficacy, without which the solutions will not be 

satisfactory. 
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Going to a more formal way of setting up the stage for doing the wave number 

approach, we first introduce a harmonic function of period L. And we introduce it in a 

complex form, a complex representation because very often it is more convenient to 

represent a harmonic function that way because you can accommodate the sine and 

cosine terms more compactly through a complex representation. 

 

And we are going to show both the analytical as well as the discrete form of such a 

function here. So first looking at the analytical form, we are defining the function 

Ikxef  . Here we are using capital I as under root minus 1. Usually, we use the small 

i for doing that, but because we have exhausted the small i for meaning grid index 

here we are going to call the under root minus 1 as capital I ( 1I ). 

 

And this is essentially going to cater to a large number of waves, possible waves 

having different wave numbers. So in Fourier series representations for example, we 

could be having some coefficient terms also coming on over here, but we are not 



including them, but we will be looking at behavior of such coefficients later on in a 

future lecture, where we deal more on stability analysis. 

 

So as far as the modified wave number approach is concerned, we will not be needing 

the coefficient term and therefore, we are not including it here. We recall the Euler 

formula where we can have representation of this Ikxe  in terms of the cosine and the 

sine terms. And we may often come across even with Ikxe .  

 

Now we need to remember that this is an analytical form which would give us the 

value of this function at arbitrary points x within an interval where the function is 

valid or defined. But when we do discrete grid based calculations, the function will be 

available only at the respective grid points. And therefore, we have to have an 

equivalent representation of this function in the discrete space. 

 

Before we go on to that, we just recall from the previous slides that we had defined 

wave number like what we have done over here. And we also recall that there will be 

an integer number of periods in the domain of length L irrespective of the wave 

number that we accommodate, and that the wave number varies with this index small 

n. So as we said that, on a discrete grid, we have specific points at which the 

functional values will be available. 

 

So if we have the function defined at a grid point i we call it fi. And then what we do 

essentially is that in the index we convert x to xi, where xi stands for the x coordinate 

corresponding to the grid point i. Now we can very easily see from this nomenclature 

that at x = 0, we have the x0 expressed as Δx⨯0, at x = x1 we have x1=Δx⨯1 and so 

on. 

 

So that way we can say that at xi the coordinate will be represented by multiplying Δx 

by i, the grid index. So likewise, fi + 1 can be represented this way, where you have     

xi + 1 here in the index and xi + 1 is nothing but Δx⨯(i + 1). So again the grid spacing 

times the index of that grid point. Similarly, fi – 1 will be given by an expression like 

this. 

 



So we need to keep these nomenclatures in mind, because when we do the wave 

number approach calculations, all these things that we discussed over the last few 

minutes will come in very handy. Now let us do a few calculations. 
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We will start off with a calculation where we try to understand what would be the 

modified wave number for CD2 scheme for first order derivative. Of course, we still 

do not know precisely what we are meaning by modified wave number, but as we do 

this example, we will understand better that what is the meaning of this whole 

process. 

 

We remember that the analytical function that we had defined was Ikxef  . And we 

are talking about first order derivative. So if we take the analytical derivative f   that 

essentially means, here it will essentially mean df/dx and that will be equal to IkxIke . 

We can represent it as Ikf. 

 

So this is the analytical derivative or exact derivative. And now you can perhaps 

guess that we will also find an approximate expression for the derivative through our 

finite difference scheme. So when we do that, we can call it as 2CDf  . Then compare 

2CDf  with Ikf that you have from the analytical part. That is the whole idea. 

 

In the analytical part, we have the wave number figuring here in the expression of f  . 

We have to figure out that in the f   expression that we work out for CD2 scheme, the 



k that comes up, is it exactly equal to the k that we have from the analytical approach 

or it is some other value. The one that will come up in the CD2 expression we will 

mark it as k   and the idea would be to find out whether k   is equal to k or not. 

 

So that is the question we are raising at this point. Now if we manage to find that both 

the wave numbers are matching we would be most happy because then what it means 

is that CD2 is doing as good a job as the exact derivative. Now how do we go about 

finding the f   for CD2 scheme? Let us try to put the approximation that we have for 

the CD2 scheme and then try to work our way ahead from that point. 

 

So this is the approximation we have for f   for CD2 scheme and remember that this 

f  is being calculated at the grid point i. So now it is a matter of just substituting 

those expressions which we already wrote previously. 
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We take out a common factor. Again from Euler formula you can show that the 

bracketed term in the numerator can be seen simplified as this. Why is it because 

cos sinie i      

while  

cos sinie i      

 

 



and therefore, if you take a difference you are left with sin2i .  

2 sini ie e i     

 

So based on that we can show this to be coming up in the numerator. So what do we 

have finally from this step? 

(Refer Slide Time: 30:39) 

 

 

We have, this may be written as fi. Now we will just rewrite this whole thing in a 

format which becomes very easy for us to compare with the analytical expression. So 

we now recall that the f   analytical was equal to Ikf. And through the discrete 

scheme that we have used over here, we have the i the fi which is nothing but a 

counterpart of f. 

 

And an expression in between, which is not the same as k unfortunately, and that is 

the one which we will call as the modified wave number. So since k and k   are not 

the same, it is as though through a numerical means k has been translated to a 

different expression which involves xxk  /)sin( . 
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So that means a wave with a certain wave number or frequency is now having a 

different frequency associated with it, when it is being captured in the discrete 

calculations using the CD2 finite difference scheme. We will discuss more on this in 

the next lecture. Thank you. 


