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Let us continue our discussion on Kelvin-Helmholtz instability, which basically studies 

the instability of an interface between two liquids. And the top liquid may have a density 

rho2 and the flow coming from left to right is U 2, while below the interface you have a 

fluid of density rho1 and the uniform flow U 1. For such a flow configuration, we want 

to study, initially let say the interface is given by z equal to 0 and now we part of it by 

some arbitrary disturbance, which we defined it as z is equal to some epsilon times eta as 

a function of x y and t. 

So, for such a flow we are basically assuming it to be inviscid irrotational flow, but we 

would be doing than we can use the velocity potential, which I am writing it as a phi tilde 

and it has a subscript j indicating that we have a fluid 2 above and fluid 1 below. And the 

uniform flow gives rise to this component U j of x plus the unknown part. This is the 

disturbance field, so we are basically in search of what this disturbance field is going to 

be. 

So, the governing equation for inviscid irrotational flow is nothing, but the laplacian of 

the total phi j equal to 0, so if I substitute this, then I will get the corresponding equation 

for the disturbance velocity potential amplitude in terms of equation 1. 
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So, this is what we started doing, we also spent quite a bit of time talking about the 

interface boundary condition, that is the kinematic condition right. So, we satisfy the 



boundary displacement is equal to the normal velocity, that is what happens in a linear as 

a sense, we have spent some time and we found out for each phase, each side of the 

interface j equal to 1 and 2, we get an equation which is given by t. Additionally of 

course, if we have a interface of two liquids which may have different density or 

different dynamic pressure, it can also develop a pressure difference. But what we are 

talking about is, this disturbance is characterized by wave numbers, which are large 

enough to neglect those kind of discontinuities those arise due to surface tension. 

So, what we require here is basically a pressure continuity. So, the pressure continuity 

condition we can write it down over using the unsteady Bernoulli’s equation, in the last 

class we did that. And we find out that there are two possible conditions that we need 

worry about. One is the order 1 condition that fixes the constant in the Bernoulli’s 

equation in the dynamic pressure on either side of the interface through this equation. 

What is more important is, since we are in search of the quantity is the order epsilon 

condition of this pressure continuity condition and that comes out from the Bernoulli’s 

equation like this. 

So, what we are going to do is, we are going to find out that order epsilon condition will 

be density times del phi by del t. See, please note that this disturbance potential, it is 

going to be 3 d as well as it is a function of time. So, if we do that, so this is what we get 

from the pressure continuity equation. Now, those of you may not be completely familiar 

with Fourier transform. Please do understand that we use Fourier transform in those 

cases where we want to treat as generally cases possible. So, it is not like Fourier series 

where you are only talking about periodicity. 

So, if you have seen any arbitrary periodic disturbance on the interface, then I can define 

it in terms of its a Fourier transform in x and y direction, which is given by the wave 

number alpha and beta, alpha in the x direction, beta in the y direction. So, this is the 

most generic definition of the interface disturbance that we can talk about. So, it will 

have an amplitude which I am calling it capital F, which will be function of this two 

wave number components, alpha and beta it is also a function of time. And then of 

course, this is the phase path and this is what we have to integrate over all possible 

values of alpha and beta. The same way, we can consider the corresponding velocity 

potential on each phase to be equal to given by a Fourier transform, what we have here. 

Please do understand now that this disturbance quantity is going to be function of x y and 



z and t. So, x y variation we are giving in terms of Fourier transform. So, then what 

happens to this amplitude? The amplitude will not only depend on those wave numbers, 

alpha and beta, they will also be function of z and t. So, this is where we stopped in the 

last class, or I think we went to little further because we used this and plugged it in 

equation 1. 
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So, what we really found was the following, that if we use this definition of the 

disturbance potential in the governing equation for the disturbance velocity potential, 

then we are going to find the governing equation is going to be this. Well, you may 

object because Z is a function of time also, so,if you do, I would take preventive measure 

and write it as a partial derivative. 

So, let us write this as this, and what happens is when I differentiate it with respect to x 

twice, I will get i alpha square, so that is minus alpha square, the y derivative will give 

you minus beta square. So, I can add that alpha square plus beta square and call it a k 

square and this is what we get. Now of course, this will have two components of the 

solution. One would go as e to the power plus k z, other will go as e to the power minus 

k z. And we want to enforce the physical condition, namely that if I perturb this 

interface, the corresponding disturbance will have a finite amplitude. 



So, what happens is, if I go far away from the interface either above or below, the 

interface disturbance should decay. So, that condition, physical requirement that the 

disturbance decay away from the interface will basically fix your solution in terms of it, 

true constant f 1. So, what this f 1 is going to be? f 1 will be function of alpha, beta and 

time. That is what we are keeping it and same because that is what we are going to get 

alpha, beta and t because the z variation is going to come out like this. For phase 2, will 

have minus k z and for the phase 1, I should have plus k z because there z is negative. 

So, that is what we are going to. So, please do understand that this is itself a function of 

alpha, beta and t. Now, so if I do this, I could then write down phi of j which according 

to our requirement is function of x, y, z and t would be given by this definition. Instead 

of Z j, I will write this as f j e to the power minus plus k z and then e to the power i alpha 

x plus beta y and d alpha d beta. So, this is what we are going to get. 

So, this I could call this is equation 6, and this is our disturbance potential candidate. So, 

what does it do, what have we done so far? We have gotten a solution which satisfies the 

governing equation, which also satisfies one of the boundary condition that it decays if 

you (( )) this. So, what is required first to do is to ensure the other conditions are also 

satisfied. 

So, what we can do is, we need to basically then go head and explore what is given by 

condition 2. What we could do is, we could use this definition 4 for interface disturbance 

in equation 2, then what are we going to get. So, del eta del t will be nothing, but del f 

del t or I could write d f d t because these are parameters, so this will be like this. So, that 

d f d t, I will just write out a shorter notation, write like this, F dot, that is this path. And 

what about del eta del x? That will be i alpha F. 

So, that is what we are going to get. And we have U 1 ahead of it, so we are going to get 

this. And what about del phi j del z? That we can differentiate here. For side 2, I will get 

minus k and for side 1, I will get plus k times this f of j. So, that is what we are going to 

get. So, this will be minus K f 1. And for the side 2 that is going to be F dot plus i alpha 

U 2 f. And now what we are going to get? This is going to give us minus k, so this 

becomes equal to K f 2. And both of this is going to be equal to 0, that is what the 

condition 2 tells us. 



So, now let us keep this in perspective that whenever I use a dot, I actually mean this 

kind of a time variation, this is what we mean by F dot. So, what we are going to do is, 

we are going to use 3. Now, let me use 3, this is the other condition that pressure 

continuity condition that also we need to satisfy. 
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So, if I do that. So, this part is taken care of, interface boundary condition is taken care of 

that gives a 7. So, this is what it is. So, I will also remove the order 1 condition, which 

we do not require because we are looking at the perturbation quantities. So, if I really 

look at this from here, what I could do is I could use this definition, rho as equal to rho 2 

by rho 1. So, you divide this both side by rho 1. 
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So, what I am going to get? I am going to get this quantity on the left hand side, I will get 

del phi 1 del t minus rho del phi 2 del t and I have this quantity U 1del phi 1 one del x 

and this quantity I am transporting on the other side and I have divided by rho 1, so rho 2 

by rho 1 will give me rho, that is why we have got this also. So, I will get rho U 2 del phi 

2 del x. Plus I have here on this side, I will have g eta and on this side, I will have, if I 

transport it on the other side, then I will get rho g eta. So, if I write it down, I will get 1 

minus rho times g eta that is equal to 0. 

(Refer Slide Time: 15:09) 

 



So, that is what we get. So, let me call that as 8. So, now what we could do is, we could 

use these definitions that we have used and subsequently got the solution. So, basically I 

am suggesting that you use 4 to 6 and as substitute in it this condition. What I am going 

to get? See, from here I have this equation, so del phi 1 del t would be F 1 dot. So, I am 

going to use that. So, basically what I am getting now from there that will be f 1 dot and 

from here minus rho f 2 dot plus del phi 1 del x I will get i alpha f 1. So, I am going to 

write that i alpha U 1 f 1. And this one, I will get minus i alpha rho U 2 f 2. And that 

leaves us with this term, that will be 1 minus rho times g into eta. What is eta in the 

Fourier space? That was capital F, so this is what we are getting. 

So, we are using up satisfying one condition after the other, but now this is the result 

interrelation. But I can see there are three quantities, f 1, f 2 and capital F, but I have also 

equation 7. So, I can use equation 7 to relate f 1 with capital F and f 2 with capital F. If I 

do that, what do I get? So, basically what I am doing that I have obtaining the following 

relation, f 1 would be nothing, but equal to F dot plus i alpha U 1 F by K, that is the one 

condition. And the other condition is the f 2, that will be minus F dot plus i alpha U 2 F 

by K. So, this I can actually plug it in. 

So, if I call this as 9, so we get this, so use it in 9, that should simplify our job. So, we 

could now these are all taken care of. So, what we are going to have is substitute it there 

and we are going to get F double dot plus i alpha U 1 F dot by K. So, this is your f 1 dot 

and rho f 2 dot itself has a negative sign, so this will work out as a rho by K. And I will 

have differential of this that will be F double dot plus i alpha U 2 F dot. So, I have gotten 

these two term here. Now, here I will get this term i alpha U 1 by K and I have F dot plus 

i alpha U 1 F. And from here I am going to get again a positive sign here and that would 

be nothing, but i alpha rho U 2 by K that will be multiplied by F dot plus i alpha U 2 F. 

And what is left is 1 minus rho into g F. So, basically we have achieved our goal. So, 

what we have obtained basically a differential equation for a single variable F, where all 

the derivatives are with respect to time. 
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So, we are basically studying the variation of this interface disturbance amplitude capital 

F as a function of time. So, if I look at the developments that we have obtained, we have 

gone through all of these and we have actually come to this equation 1 5 2 1 that you can 

see there. So, this is what we have obtained. So, I wanted to derive all of this step by 

step. So, this is how it looks like. So, this is how it looks like and you get that equation, it 

is second order ODE, we can solve it. Now, the time variation, the time variation of the 

interface displacement also I can write it in terms of a Fourier transform, that is what we 

have done here, we have done it in terms of a circular frequency omega, that is what it is 

that. We have written F as basically nothing, but a Fourier transform times amplitude 

times a phase. 

So, F I have written as F hat e to the power i omega t d omega. So, what we could do is, 

we could substitute this in this. So, this if I call that as equation 10, so you can use this. 

Now, what happens? Why actually do we resort to Fourier transform? The simple reason 

is this helps us converting a differential equation into an algebraic equation, that is one of 

thing that you are seeing. 



(Refer Slide Time: 22:53) 

 

So, if I substitute it there, then what do I get? Second derivative of F will give us i omega 

whole square, so that will be nothing but this. So, it is going to be omega square F hat e 

to the power i omega t d t d omega. So, you understand that the whole goal is to basically 

converting a differential equation into algebraic equation. And when you have partial 

differential equation, you will also see that it can do the same thing with respect to those 

particular directions where we take the Fourier transform, it converts the differential 

equation into corresponding algebraic relation. And if you have to do it in terms of 

numerics, that is also a great benefit. Taking a differential numerically is all is going to 

introduce you large error, that can be completely circumvented. And at the same time, 

you can actually also obtain this in terms of a algebraic relation. So, you can explore it 

over very large range of omega. So, that gives you additional ability or degree of 

freedom to explore any range of frequency that you wish to. And mind you, we are not 

talking about any specific type of disturbance, this is a very arbitrary disturbance. 

And what happens? Omega is what? Omega is a real quantity or a complex quantity? 

See, here you got to understand what is our goal? What is it we started with? We started 

with to explore if the interface disturbance is going to the disturbance that I have created 

at t equal to 0 is going to increase, decrease or remain same. So, how do I assess such a 

thing? That omega must be complex. 



If I have omega as complex, then I can see lots things happen. The real path will give 

you some kind of a time variation. What happens to the imaginary part? So, if I am write 

that omega r plus i omega i whole square, well let us look at, instead of this, let us look at 

F itself, that will be more instructural. So, F will be somewhat like F hat and then I will 

write i omega r t. So, this is the really a phase path. What happens to the imaginary part? 

That will be minus omega i t d omega. 

So, what happens now? The omega I will determine whether it is going to grow or decay 

with time. If omega is negative, then what happens? This is going to blow up in time. 

And if omega is positive, that is going to decay in time. So, our goal would be to really 

explore what happens to this omega and that is precisely what we are doing now. 
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So, we are going to substitute this in equation 10 and see what we get. So, substitution of 

this Fourier transform in this will give us the following equation. So, from the first time 

here I will get minus omega square times1 plus rho. So, that is that, omega square times 

1 plus rho, that is that term. Then we have the d f d t term which has the coefficient here 

2 i alpha and d f d t will also give me i omega. So, this will become minus 2 alpha 

omega. 

So, that is what we are going to get, minus 2 alpha omega times the coefficient that we 

have there, U 1 plus rho U 2, that is from the first derivative. And the last term of course, 



remains as it is, so we could keep it whatever we have alpha square times U 1 square 

plus rho U 2 square minus1 minus rho g K. Now, you see the whole of this is multiplied 

by, so this is the multiplied by F hat and then you are multiplying it by e to the power i 

omega t. I am performing that integral over all possible omega and that is equal to 0. So, 

that is what we have. 

So, this is what happens. So, this differential equation turns out to this. So, if the integral 

over arbitrary omega range has to be equal to 0, then the integral must be equal to 0. So, 

that is what I had been referring to, that it converts a differential equation into a algebraic 

equation because this simplifies to what we have written here, that is what we have 

written as 5.23, that is the equation, that is what you have it within the square bracket. 

So, what you have now it is basically a quadratic in omega. A quadratic in omega and we 

do not have to worry about this, we will just simply write this equal to 0, and that will 

tell us what is happening. What is happening with respect to what? What are the physical 

quantities that our disposal that we want to study? We want to see what this density ratio 

is, rho, we also want to see what happens to U 1 and U 2 or their relative magnitude. So, 

that is what we are trying to figure out. So, this is your quadratic in omega and you can 

get the roots. So, to get the roots of a quadratic we need to basically find the 

discriminant. 

So, what is this discriminant? So, this is your b, this is your c and this is you’re a. So, if I 

do that b square minus 4ac, what am I going to get? I am going to get here 4 alpha square 

times U 1 plus rho U 2 whole square, that is your b square and minus4ac will give you 

what? That will give us 4 times a is 1 plus rho and c, I can notice that this is going is to 

be 1 minus rho g K minus alpha square U 1 square plus rho U 2 square, this is your b 

square minus 4ac. Simplify it let us get whatever we can, open this up, we will try to get 

alpha square U 1 square plus alpha square rho square U 2 square plus 2 rho U 1 U 2 

alpha square. And this one multiplied by this, I have taken 4 out, so this will be 1 minus 

rho square. So, I will have 1 minus rho square into g of K, that is the first term and the 

second term is going to be, there is a alpha square and I will have 1 plus rho and U 1 

square plus rho U 2 square. So, this is what we are going to get. 

Well, a little more algebra, I am purposely doing it, so that you do not have to fumble 

cross later. Alpha square U 1 square plus alpha square rho square U 2 square, then we 



have 2 alpha square rho U 1 U 2 plus 1 minus rho square g K. And I will open this up 

and that will give me alpha square, within bracket I will have U 1 square plus rho U 2 

square plus rho U 1 square plus rho square U 2 square. Now, you can see there is a 

cancellation, this cancels with this term. So, this is one cancellation and the second 

cancellation of course, will come from here that will cancel with this term. 
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So, we have made significant simplification and we are looking at the discriminant of the 

quadratic in omega and this is what we have obtained. So, what we find that b square 

minus 4ac simplifies to 4 times 2 alpha square rho U 1 U 2 plus 1 minus rho square g K 

and minus alpha square rho, within parenthesis we have U 1 square plus U 2 square. So, 

this little more simplification is required here. This two term can we clubbed together 

and what we get basically minus alpha square rho. 

If I take common I will get U 1 square plus U 2 square minus 2 U 1 U 2. So, that I could 

write it as U 1 minus U 2 whole square. I purposely did all this algebra to show to you 

that what matters in all this depends on not on the absolute magnitude of U 1or U 2 but 

the difference. Why it is different? Recall this is what Kelvin observed that if you have a 

relative motion, it is going to tear apart the interface. So, this relative motion is what U 1 

minus U 2. So, that is what we are looking at. Basically, what we are exploring? We are 

exploring the various mechanisms of instability. So, one of the mechanism that we are 



seeing, that if we have shear the relative motion across interface, that is a very potential 

candidate for leading to temporal instability. 

So, this is what we are going to do. So, we basically get that expression now, I purposely 

spent a little time to help you with the simplification. So, it has one path is alpha times U 

1 plus rho U 2 as given in equation 24 there in the slide. So, you can get this path and 

there is this other path that comes from that characteristic determinant path. And what we 

get is g K 1 minus rho square minus alpha square rho U 1 minus U 2 whole square 

divided by 1 plus rho. 

So, one thing is pretty much apparent to you that if this quantity under the radical sign is 

positive, then omega is real. So, what that would signify? The disturbance that I give will 

remain the same, it is just periodic variation, it is only the phase path, it will go with 

omega r. So, that is the possibility, if the quantity under the radical sign remains positive 

,then we have a case of neutral stability. So, that is what we understand. 

So, we have the expression here and we just noted that if we have the quantity under the 

radical sign as positive, that ensures neutral stability. We can have instability, when this 

quantity under the radical sign is less than 0, then that would contribute to the imaginary 

part of omega. And we are going to have a pair, something will be plus i omega another 

will be minus i omega. And because of that, this we have seen already that, if omega i is 

going to be negative, then we are going to have instability. So, come at may because of 

the quadratic nature of this equation, the quantity under the radical sign, if it is negative, 

you have instability. 

However, let us also look at the other possible cases or let us look at one of the simpler 

case that we can conceive of this, alpha equal to 0. What does it mean actually? See, 

basically where this alpha and beta came about? It is the interface disturbance that we 

have created at t equal to 0, that is what we defined as eta equal to F e to the power i 

alpha x. 

So, we are talking about disturbances for which there is no waviness in the x direction, in 

the direction of the stream. However, there is waviness in the y direction, so that is the 

normal to the plate. So, this is going to be a situation of this kind. Let me just show you 

with a perspective. So, this is your y direction and this is your x direction and z is of 



course, perpendicular. So, basically let me slightly better for you to appreciate. Let us 

say this is the what we are doing at x and y direction. 

So, the disturbances that we have given have variation in the y direction. So, that will be 

like corrugation in the span wise direction. So, flow is coming in this way and you have 

the surface corrugated in this. So, it is like a corrugated surface and flow is going along 

the group, so that is what it means. So, what happens to this? If alpha is 0, so this part 

goes to 0, that is nothing there. What happens to K? What is K? It is beta. K square was 

alpha square plus beta square. So, if alpha is 0, so this becomes this. So, then what you 

have is omega 1 2 will we equal to minus plus, I will get this, this part also goes away 

because alpha is 0, so I get square root of g times beta and there I will get 1 minus rho 

divided by 1 plus rho. 

So, these are very interesting case. See, even if you may have shear, a span wise 

disturbance does not depend on what this value of shear is because alpha is 0. Shear was 

larking here. So, if I put alpha equal to 0, nothing happens. So, the span wise 

disturbances do not matter. So, here is the very simple case that tells you the three 

dimensionality is not going to be very important because you are only going to see this. 

And what about this? Now, you have to think about what is rho, rho was rho 2 by rho 1. 

So, you are going to have instability when this rho is greater than one, that means what? 

A heavier liquid is resting over a lighter liquid. And common sense tells us that is going 

to be unstable. If I try to do that anywhere, even with rigid body, if I have to balance 

heavier object on top of a lighter object that is a tendency (( )), fluid also shows the same 

thing. This creates instability if rho is greater than 1, that is rho 2 is greater than rho 1. In 

fact, this is what was that, this is the scenario that was studied in this mechanism called 

Rayleigh-Taylor instability. You know Rayleigh-Taylor instability was studied when 

there was no U 1 and U 2, but what we have come through this, that is why I did not 

even spend time discussing about Rayleigh-Taylor instability, that falls as a special case 

of Kelvin-Helmholtz instability, you put U 1 equal to 0. There also you would see the 

same thing, even if you look at the most general case, if I put, look at this U 1 and U 2 

equal to 0 this part of course, will not be there, this part will not be there and will get 

this. 
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And the instability is totally is going to be determine by g K 1 minus rho divided by 1 

plus rho. So, the disturbance could go in any direction k direction, their condition of 

instability is given by this. So, I want you to really go ahead and do it as a home 

assignment and submit it. That is going to be your first home assignment, you study 

Rayleigh-Taylor instability from the first principle, the way we are derived all this thing, 

you can write down the same set of logic and argument, except that your U 1 and U 2 

equal to 0. It is a much more simpler case. So, we will get to practice what we are been 

talking about. 

So, this is what we would call as the case 1, where we find that if we have span wise 

perturbation, not the steam wise perturbation, then that is going to be unstable only if we 

have a very unstable configuration, even when this is not moving by the Rayleigh-Taylor 

instability case. 
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So, we can talk about the next case that we can talk about. The case 1 is just now we talk 

to about, so we will go to this next case. This is the case where the general interface 

perturbation is such that the characteristic determinant is negative. We have already said 

that is going to be unstable and the interface will grow in time. I can also write it like 

this, U 1 minus U 2 whole square should be greater than g k by alpha square into 1 minus 

rho square by rho. That is the condition of instability. Now, what you need to do is 

explore it little further, so this basically tells you that what kind of shear is going to be 

causing instability. The relative motion that U 1 minus U 2, if you square it, that has to 

be greater than this, that is determined by this rho. 
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So, what we do is, we simplify it. How do we simplify it? We are talking about k. what 

does k mean? k means it a oblique disturbance, it is neither in the x direction nor in the y 

direction. You can take the wave number vector and you will get two components, the 

components are alpha and beta. So, if I talk about that, then I could write down the same 

condition that I have written, I will get the instability and the corresponding wave 

number k star is given by this. 

I have just read it in the same thing. So, what happens here? Look at this quantity, what 

is the angle between alpha and k star? If that is gamma, then cos gamma is alpha by k 

star. So, that is the reason I have put k star also on the right hand side because this is 

essentially a geometric parameter that 1 over cos square gamma. So, I find that k star or 

those unstable waves, which are greater than this for a given angle. 

So, for every angle gamma, I am going to get a different value of k star ,which are going 

to be unstable. For every value of propagation direction, oblique direction, we are going 

to find that out. However, for any arbitrary gamma, since cos square gamma is in the 

denominator I can get a minimum value of k. Minimum value of k star will be when 

gamma is equal to. No, it is in the denominator. So, what is the maximum value of cos 

square gamma? It is 1. So, cos square gamma equal to 1, means what? That it is going in 

the stream wise direction, k star and alpha in the same direction. So, we have already 

seen here in the span wise is direction, if you do not have that potentially unstable 



positioning, then we are going to get stable condition. If I do not put heavier on top of 

lower, the span wise is disturbance is not going to do. And here we had seen that I am 

going to get k as minimum, what does it mean? k minimum corresponds to longest wave 

length, longest wave length disturbances, those are going to be unstable and that is given 

by this condition that we have written. 

So, that is what we are talking about. So, this value of wave number, k star is equal to k 

mean would occur for two dimensional disturbance. The disturbance is two dimensional, 

it is going in the stream wise direction, there is no span wise components and that is this. 

Now, you can really understand that when it comes to study of stability, many a times we 

find two dimensionally instabilities are more potent than more harmful and so called 

more general three dimensional cases. Here is a very clear example and here of course, 

one can note that we have taken a very simplified model. If you now summarize what we 

have seen so far. What we have seen so far is basically we have a considered a uniform 

flow below and above that interface and that is also we said a very simplify assumption it 

is irrotational. And then we see that the potentially unstable temporal instabilities occur 

only in the direction on the flow directions. 
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So, 2D disturbances are the most harmful one and 3D disturbances are less harmful 

because you can see that amplitude is given in terms of that. And what is the value of the 

shear is given by that expression that we just now seen. Now, what you can see that we 



can also consider a case, where this two are of same species, where would you see this 

case? Does it have any relevance to physics? I have an interface somewhere, I have a 

different velocity above and a different velocity below, where do we get it? People from 

aerospace engineering should not have any difficult in visualizing that, where would you 

see that? 

No, I say that aerospace engineering, aerospace engineering do not worry about 

atmosphere. They do, but not to that extent. Where would you see that? Yogesh. Jet. 

Well, then I am going to create a jet, two different jets, then they interface is where we 

will get, and what will we call that? That interface is giving to be called the mixing layer. 

But you also can see it. If I take the, say a aircraft wing at an angle of adopt, what 

happens to the flow here? On top I have one type of velocity and bottom I will have 

another type of velocity, that is why you generate lift, but it is the same fluid. 
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So, we are studying case 3 as that, that we are talking about rho equal to 1 and we still 

have dissimilar velocities across the interface. And that is what you see as a trailing edge 

of a wing and we can simplify that, whatever equation that I have written, so I will put 

rho equal to 1, then I will get those characteristic exponent would be given by this. And 

it has got a real path that is a given by the average velocity. What does the real part tell 

you? 



Yes Morashi, what does real path tell you? The expression that I have written for 

interface disturbance, what does the real part gives us? The frequency of variation. So, 

the frequency of isolation of that interface. What we are saying that if I create any small 

disturbance, the disturbance frequency is given by this, the average velocity. And 

whether it is going to grow or decay is determined by the shear. And you see now we 

have no choice, it is unstable, you have a plus quantity and you have a minus quantity. 

So, what you are seeing if the flow passed a aero fall at the trailing edge, you are going 

to get a potential instability. So, we have temporal instability and that is for any alpha, 

you see that instability is for all alpha. That is a very dangerous scenario, that is why you 

see you can hardly think of the flow behind any stream line body to remain laminar 

because this is a very potentially unstable configuration, you are going to see the 

disturbance are going to grow. 

I will stop here. Before I will do that, I just simply will ask you, since you have an 

expression for omega 1 2, you can calculate the group velocity and phase speed and tell 

me what do you see. So, I will stop here. 


