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In the last class, we talked about the various attributes of turbulent flows. We catalogued 

some of the characteristics of turbulent flows and one of the attribute that we talked 

about was that it is not a molecular phenomenon. You can see it in the macroscopic 

level. So, you can write down the continuum equation and that would still be valid 

equation for turbulence. 

(Refer Slide Time: 00:51) 

 

So, that is why, this is all is understood that if you look at Navier-Stokes equation, that 

should explain turbulence adequately. So, suppose we are looking at a turbulent flow at 

low speed, so that in compressibility holds, then these are your momentum in mass 

conservation equations giving rise to Navier-Stokes equation. What we have done here in 

writing the momentum conservation equation? We have added this time dependent body 

force term which is given as a function of position X and time t for all the points in the 



domain omega and the boundary condition is given by, boundary is located at del of 

omega. So, this is what we have. So, this is your problem statement. 

(Refer Slide Time: 02:00) 

 

Now, once you have this, we need to find out how the solution of these equations can 

describe those features of turbulence that we talked about. One of the earliest attempts in 

this direction was made by Reynolds itself; what he proposed was that this space time 

dependent velocity field is decomposed into two components; one is the time 

independent part or the time average part and the other one is a kind of a fluctuating 

component. 

So, when we are talking about a time averaging operation, this essential is indicated by 

this angular bracket that would involve, you take the signal here; integrate over a large 

time, and of course, divide it by the time span and in the limit tau going to infinity; 

whatever you get, that is what you are calling as capital U of X. 



(Refer Slide Time: 03:14) 

 

So, this is your mean flow or time independent flow part. This was what was originally 

done by Reynolds and it is called double decomposition because you are taking the full 

flow field, splitting into a time averaged part and a fluctuation part. Additionally, what 

Reynolds did? Reynolds basically said that this time dependent part is truly random. So, 

what does it mean? Truly random means if you take its time average, it will come to 0. 

So, this is the way that when you split a stochastic quantity into two parts is what we will 

call as a Reynolds splitting. Now, let us look at the corresponding boundary conditions. 

How do we apply those boundary conditions for the velocity field? Now, we have split 

the velocity field in terms of a time average part and a truly random part. Then, suppose 

this turbulent flow is generated by a flow condition where your boundaries are not 

articulated, so the boundary motion is prick loaded. That means what? That the boundary 

conditions are going to be time independent. 

So, if that is so, if you are looking for such a flow, then this the mean U could satisfy this 

time independent condition because that is the way we have split it. What will then 

remain of for v? v is the fluctuating quantity. So, all boundary conditions is taken up by 

your capital U. So, v ends up satisfying homogenous boundary condition. So, this is the 

story, but you know there is submit of philosophical (( )) that we can indulging at this 

stage. We are talking about turbulence to come out when we have not done anything to 

the flow because the boundary conditions are time independent, but still some of the flow 



has become time dependent. We at least have some clue where it has come about; it 

could be because of flow instabilities; flow instability is something which we have seen 

and lead to that. 

But looking at it from the receptivity angle, we also know that if we eventually have 

gotten into some kind of a time dependent motion, there must have been some kind of an 

excitation which is time dependent. But this is for a long time held view that turbulence 

comes about out of nowhere. That is what this boundary condition in this splitting is 

indicating. So, now, we should keep this in mind; then with the fluctuations satisfy 

homogenous boundary condition and the total boundary condition is time independent 

and that is totally taken up by the mean field. 

(Refer Slide Time: 06:55) 

 

So, there are these possibilities. if we have u specified, that is a Dirichlet type of 

boundary condition, on the boundary, then v vanishes there. If, on the other hand, if I 

prescribe some kind of normal derivative for u, then the normal derivative of v will 

vanish because whenever the normal derivative is given for the total field, that is also 

again taken over by capital U. So, v ends up always satisfying homogenous condition in 

terms of the variable itself in the form of Dirichlet condition or in terms of derivative 

condition, the Neumann condition. 



Now, if we are talking about a total flow field that is periodic, then that periodicity 

would come about from the geometry of the problem and that would be totally taken up 

by both the mean as well as the fluctuation because you cannot say like the periodicity is 

completely taken over by the mean. Then, if v is not periodic, of course, in the total field 

you cannot have periodicity; so, v also has to be periodic; so, please do remember that 

these are the three possibilities for the fluctuations. 

(Refer Slide Time: 08:35) 

 

Now, having described this, let us go ahead and look at our Navier-Stokes equation with 

the help of that double decomposition we talked about. If you do it, we are going to get 

an equation of this kind. Well, how does it come about? 
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We have this condition. We are writing the Navier-Stokes equation. The momentum 

equation in this form with the body force term kept here. Now, what we have done here 

basically? So, this is that u dot del. Now, u itself we are writing it as capital U plus v. 

Please note that unlike what we did for instability studies these fluctuations, but we are 

not talking about small fluctuations in turbulence. The fluctuations are of the same order 

of magnitude as the mean itself. So, that is why there is no need to put some epsilon or 

anything; it does not hold. 

If I now substitute this kind of decomposition in this, what will happen to this term? 

(Refer Slide time: 10:18) This will be base. So, by definition, of course, this is 0 because 

u is the average called time averaged quantity. So, it is not a function of time. So, that 

goes off. Now, if I average this equation, so that means what? I will be averaging 

individual term, one at a time. So, if I do that, we are talking about this. (Refer Slide 

time: 10:58). So, this will be this. 
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Now, what happens is we make a supposition that the time averages of time derivatives 

vanish may seem troubling; computing course we do not go that deep, but here we can 

afford to explain it little better. 

(Refer Slide Time: 11:47) 

 

Why because when I am talking about time averaging operation, what was the definition 

that we talked about? This is a limit tau going to infinity one over tau integral u dt and 

this is going from 0 to tau; that is your definition of time average. 



Now, what is this averaging operation? Averaging operation is over a very large time. If 

I am talking about a very large time, what is the corresponding frequency? Frequency is 

going to be very small whereas, the fluctuations that we associate with turbulent flows 

are characterized by very high frequency oscillations; that is why we call it chaotic or 

random. So, what happens is even though we are looking at a time dependent motion, 

there are two types of time variation: one is happening over a very large time; that is 

what this time averaging operation is suggesting, and another is that very high frequency 

fluctuations that is characteristic of hydrodynamic turbulence. 

So, these two frequency scales are widely separated. If that is so, we could treat them 

independently. This also is the gist of what people talk about theory of multiple scales; is 

not it? We are having different types of time scales; one is happening over a very small 

time scale with very rapid fluctuation; another is slowly varying. In fact, that is one of 

the reason that people have gone ahead and started talking about unsteady RANS 

equation. We have not talked about RANS equation. Now, we are seeing, what is the 

philosophical justification of talking about an unsteady flow. 

So, this is what we are talking about; the supposition that, if we are looking at the time 

average quantities associated with the time derivative, this fluctuation - the derivative 

where would it come from? It would, of course, come from this high frequency 

fluctuation; that is what rapid time variation is about, whereas this operator, angular 

bracket operator is happening over a large time. So, that is what, we are saying that this 

term will have to go to 0. You do not have to really struggle very hard to think about it; 

think of even a simple harmonic variation of say v. 

If it is so, then what we are talking about? We are going to write about del v del t here; 

del v del t will be something like i omega v at the amplitude and then we are going to do 

this operation 1 over tau and tau going to infinity. And if I take this thing, what happens? 

Over one cycle, it is going to give me 0 contribution. So, even if I take to a very long 

time scale, I may have at the most a fraction of a time scale because every time scale will 

cancel each other out and then if I am getting that contribution in dividing by tau and that 

tau is very large, it does not give you anything. 



(Refer Slide Time: 16:00) 

 

So, now, you understand why this term does not survive also; that is what will happen 

that when I am time averaging this equation, I am not going to get any contribution 

coming from this. Convinced? 

(Refer Slide Time: 16:20) 

 

Now, look at the other term. We have to be doing this. Well, we will just split it into this 

part. So, we are talking about here U plus v with a dot product nebula; this is operating 

on U plus p; that is what you are doing. So, if I do that, I am going to get here one set of 

term U dot del U; this is this term (Refer Slide Time: 17:20). Then I will also have a term 



which is like this - U dot del v; this term, then I will have v dot del U, this term plus v 

dot del operating on. Now, it is very easy for you to suggest me that these are time 

independent; so averaging operation will do anything; so, this transmit itself as it is. 

What about this term? This is a time independent quantity; this is the random quantity; so 

if I do the averaging operation, again this will go to 0. So, this goes to 0. What about 

this? This also goes to 0; this does not; this remains like this v dot del v. 

(Refer Slide Time: 18:45) 

 

So, of course, in this equation this first bracket has gone missing, but you can think of v 

dot del is the operator operating on v; so, that is that. 



(Refer Slide Time: 19:10) 

 

Now, what has happened is I could, similarly, write this term del p by rho. If I do this, 

what will I get? del of this p, instantaneous p that I am writing is this plus some kind of 

fluctuation; let me write it as this. So, this fluctuating pressure would be a function of 

position and time. So, any time dependency of pressure would be embedded in p prime 

and it is incompressible flow. So, we do not allow any fluctuation and rho; so, that 

remains as it is. And you can see this is the time independent part. So, this will give me 

nothing but grad p by rho. What about this term? The fact what pressure fluctuation is 

also random and if I am doing a time averaging operation, this also should go away. So, 

we do get that. 



(Refer Slide Time: 20:31) 

 

This pressure term will just simply give us the gradient term p by rho; that is what we 

get. So, a convection term has given us two terms; one is directly coming from the mean; 

another is coming totally from the fluctuation. This is the mean pressure term. This is the 

viscious term and this is the term that we are going to get from the viscous term (Refer 

Slide Time: 20:51) this term So, that term is also very easily understood. 

(Refer Slide Time: 21:01) 

 



We are talking about nu times del square u operating and that will give us nu times this 

plus nu times… Once again you can very clearly see this will go to 0. So, only this will 

remain and that is what you have given. 

(Refer Slide Time: 21:36) 

 

Well, I admit that we should have indicated this by a different symbol because that term 

its coming from here (Refer Slide Time: 21:48). 

(Refer Slide Time: 21:52) 

 



So, that that term gives us… we should write it like this - 1 over rho f time average term; 

let me call as time average term in terms of f hat; this is hat. 

(Refer Slide Time: 22:10) 

 

So, please do note that this is not quite right. I should indicate it by its time average 

because we talked about it. We talked about it that the body force is basically a space 

time dependent function. So, you need to talk about its time average. Now, this directly 

comes from mass convection; without any difficulty, we can understand it and the 

pressure is what we have defined here. So, there is no difficulty in understanding that. 

(Refer Slide Time: 22:46) 

 



Now, let us see what we get. We have obtained the total equation and then we have also 

obtained the mean equation. 

(Refer Slide Time: 23:14) 

 

So, if I write down the mean equation, so I am going to get the following term here. 

From here, we have seen that this (( )) del U plus v dot del, this is that and here we are 

going to get del of capital P by rho and here we get nu del bar capital nu, and this I will 

write 1 over rho; I will call it as f hat. 

Now, what? We have seen that we have split the total variable into this part. So, what I 

could do is I could try to write out a dynamical equation for v itself. What do I do? I just 

simply subtract this one from this (Refer Slide Time: 24:07). If I do that, what would I 

get? this Remember, this is a time averaged equation where this is the actual original 

equation without doing any operation; I mean this is that instantaneous equation. 
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So, I can subtract this from this; then what do I get from here? I will get this term del v 

del t. So, I will get del v del t. Now, if I write this equation here without doing any 

averaging, this is what we are going to get del v del t. And from here, what do we get? U 

dot del U plus I have written those terms; o, I will just write them down once again and 

there is not much of a problem when doing that U dot del operating on v, then v dot del 

operating on U, and of course, I have v dot del operating on v and that is equal to minus 

del P by rho minus del p prime by rho. 

And then nu del square U plus nu del square v; then of course, I will write 1 over rho f 

hat plus f prime by rho. So, if I now subtract this from there, which are the terms that are 

going to go away? Well, on the right hand side, this goes away with this. So, that is what 

we get. What do we get is retained when we then get to retake all these three terms. 

Please do understand that this term and this term are not same (Refer Slide Time: 26:56). 

This is retaining all its time variations. This is the corresponding time average term. 

So, that is why both of them would be there. This plus this; both of them are there and 

these two are those terms which are here; this and that this and that they appear there 

(Refer Slide Time: 27:07 to 27:55). then of course, I could see that this one will cancel so 

I will get minus del p prime by rho or I could write instead of writing del p prime I will 

write del of p minus capital P. That is your p prime anyway and this part will cancel, and 

this part we have said, already they have cancelled remaining retaining this. 



So, this is the term that we are going to get on this. What about this term? Now, do 

understand; the body force is not an attribute of turbulence. What is the turbulence that 

you talk about? Turbulence is an effect. What are the causes? All the turbulence is 

caused by all those inputs and one of the input happens to be the body force also; we are 

not talking about a body force which is random. We are talking about some deterministic 

but it could be time dependent body force. 

So, if I talk about that, then what happens? There is no such thing as fluctuating 

component of a prime; that is why we did not write anything here. So, this is something 

that we understand, but I must also remind you that you can talk about fluctuating body 

force itself and this is what you do in Fokker-Planck equation in physics, but we are not 

going to go through that route. So, we will not talk about Fokker-Planck equation, but we 

will just simply say there are no fluctuating body forces. 

(Refer Slide Time: 29:38) 

 

So, we will say this is non-existent. So, basically, then we have been able to write out a 

dynamical equation for the fluctuation and there is a corresponding mass conservation 

equation (Refer Slide Time: 29:57). So, these are the two sets of equation that we have 

written down for this. Previous equation that we had written, this equation 4a defines the 

time average field and that is why that equation is called the Reynolds average Navier-

Stokes equation; it is a time averaged equation. 



(Refer Slide Time: 30:23) 

 

It was proposed by Reynolds. So, that is why we call it as Reynolds averaged Navier-

Stokes equation or RANS. 

(Refer Slide Time: 30:43) 

 

However, what we have noted in that equation, well we have it here; we have no clue to 

this term immediately; we do not know what it is because this is related to the 

fluctuation. What is it is physical nature? 



(Refer Slide Time: 31:09) 

 

Here, this is like here a stress term, stress term that we are familiar with; even in laminar 

flow we have this stress term; so here also we get this. This is nothing but vi vj kind of 

term. So, that is what it is. So, these are some additional stress terms or you could even 

visualize it as some kind of applied body force. 

So, you can term that as either an additional stress term or a body force term that arises 

due to turbulent fluctuations. This additional stress is known as Reynolds stress. So, this 

is what was originally suggested by Reynolds. However, we confess that apriori we do 

not know what this is and this has been the intense focus of many research work going 

on, on the topic of turbulence modeling. In turbulence modeling we try to model this 

term because this is not known a priori. So, we do have to supplement it with the help of 

some additional phenomenon logical information or some idea is based on theoretical 

fluid mechanism. How? I am not going to talk about turbulence models any further. 



(Refer Slide Time: 32:52) 

 

So, what we have now, we could also write down the same equation. Here, we have 

assorted to vectorial form where we used vector calculus, but you can also use tensor 

notation to write it in terms of this. So, you can very clearly see local acceleration, the 

convective acceleration and this is a stress term. If you recall before Navier-Stokes 

equation was written, that this equation was invoked and this is attribute it to Cauchy; so, 

this is also called the Cauchy equation. 

(Refer Slide Time: 34:11) 

 



What Navier and Stokes did which many people do not understand that these two 

scientists, they related the stress with strain rate; that was that; without that this remains 

as if it is an additional unknown and this is of course, the body force term and this is the 

mass conservation terms. So, that is what we have. We could write in this form. We will 

use both these notations because it becomes easier for us to handle. We are familiar with 

the fact that whenever indices are repeated, that imply that you sum over that index that 

stress tensors might be written for a Newtonian fluid like this. 

So, the stress tensor has two components: one is when there is no fluid motion; so that is 

given by the hydrostatic component and this is due to the motion and this motion is for a 

fluid which has a specific characteristic which was originally suggested by Newton 

himself. So, any fluid flow which satisfies this paradigm is called the Newtonian fluid. 

What it essentially does? Basically it does tells you that the stress is related to strain and 

you are so much used to hearing that stress is proportional to strain, you automatically 

tend to think that nu is some kind of a proportionality constant which is really not strictly 

adequate or correcting to do. 

Why? Because here we have a tensor of rank 2; this is a tensor of also rank 2; at the most 

or at the least nu should be a tensor of rank 4. So, basically it is like a dot product that 

you are taking. So, nu matrix is a fourth order tensor; taking a dot product to give you a 

another second order tensor. That is what you do; in a vector equation you just do not 

write one vector is proportional to the other; you always see that Navier-Stokes equation 

is that when you are writing say del v del t, local acceleration term that comes as a sort of 

a contraction term from the convective acceleration term that involves a dot product of a 

stress term say vector. 

So, vector is a tensor or rank 1. So, that is what you get; any way, we will not go about it; 

we will go with the crowd and say stress is proportional to strain. That is precisely what 

Newtonian did himself. He took the simpler example of quite flow and then said I apply 

this strain and this is the stress appears. So, these are proportional and this is 

proportionality constant; it is not. There is a very beautiful theory developed from theory 

of elasticity which talks about how to relate stress and strain, and this is what is called as 

constitutive relation. 



So, the constitutive relations are necessary to rid propose a relationship between stress 

and strain. And in developing those constitutive relations, you can invoke certain 

properties some of which comes naturally for physical variables in terms of symmetry 

isotropy etcetera. That brings down the number of unknowns is that tensor. How many 

components would we have for a fourth order term? That would be 3 to the power 4; that 

is the 81 components, and with all this concepts of isotropy and everything you can 

actually bring it down to only 2. And in fact, you are familiar with the stokes hypothesis 

which even brings down this 2 quantity into 1. 

(Refer Slide Time: 38:45) 

 

So, we are familiar with that in basic fluid mechanics. We will not go through that; S 

tilde ij is your weight of strain and that is defined as this. So, this is something like a 

average angle at a interstice of a… so what happens is we have a stress term; we can also 

perform a Reynolds decomposition in terms of a mean component and a fluctuating 

component where the mean component itself will have the hydrostatic part plus a mean 

strain rate. So, we will expand it little further. So, you can see that the total stress would 

be split into mean and fluctuation; the mean would be given in terms of the hydrostatic 

component and in terms of the mean strain rate. 



(Refer Slide Time: 39:40) 

 

So, the mean quantities are all defined in terms of capital letters. So, capital Sij 

represents a mean strain rate. So, this mean strain rate - we should be able to define it in 

terms of the mean component of the velocity as indicated here; below that, the mean 

strain rate is given as the average of the angular rotation at this corner of a line; that is a 

small fluid element. 

And the fluctuating stress part also would be contributed by a fluctuating pressure and a 

fluctuating strain rate. So, the fluctuating strain rate would be given in terms of the 

fluctuating velocity component. So, that is what we get. There is a sort of a mistake here. 

This would be also lower case x; it is basically the same independent variable space 

variable (( )). 



(Refer Slide Time: 40:37) 

 

Now, what we need to do is having done that we could write down the mean equation 

that Reynolds average Navier-Stokes equation also in this particular form. So, this is 

your convective acceleration is equal to 1 over rho. Now, please do understand that in 

writing this term we have put the Reynolds stress term inside and this mean stress this 2 

together is what we call as the total mean stress Tij. So, this is a tensor of rank 2 which is 

contributed by hydrostatic pressure, the mean strain rate, and the Reynolds stress and this 

is the corresponding body force term that we have. So, this is an alternate way of writing 

out the RANS equation. 



(Refer Slide Time: 41:49) 

 

So, we find that because of turbulence we had these fluctuations which we called as v 

vector or in tensor real notation vi components. So, this dynamically has a dimension of 

stress term so rho times vi vj and we have taken a time average; this is what we call as a 

Reynolds stress term; we have already noted. 

(Refer Slide Time: 42:20) 

 

Now, when we write down the governing equation for the fluctuation that is written here, 

so, if I remove all the terms which are not there, so this, of course, goes away; this goes 



away; this goes away; this goes away; this goes away, but this is what we have. So, this 

is your governing equation for the fluctuation; that is what we are talking about here. 

(Refer Slide Time: 43:16) 

 

And the fluctuation, the dynamical equations of fluctuation is driven by what? The mean 

flow and also by pressure. Because of the way we proposed the body force not to have a 

fluctuating components, the body force does not come into picture at all. So, that is what 

we have saying here that the fluctuations are driven by mean flow and pressure field 

rather than being directly driven by the body force or boundary condition. Why not 

boundary condition? Because we have seen already that boundary conditions for v are 

most of the time homogenous; whether it is a Dirichlet or Neumann type, it will be 

homogenous. 

So, boundary condition really does not drive the fluctuation. So, please do understand; 

this is very very crucial that in a turbulent flow, what we see as a fluctuation, that 

fluctuation is driven by the mean flow itself. I have also, of course, the applied pressure 

gradient body force per say does not give rise to turbulence. In fact, that is one of the 

reasons that when we talk about what are waves, they are the whole thing that comes 

about because of the (( )) term. 

That is like your body force that does not directly contribute to turbulence. Tturbulence 

has to be contributed by the mean flow, the instability of the mean flow and the pressure 



gradient that is implied. So, do understand this that whether we solve the RANS equation 

in the vector form or in the tensor form, we need information about this term. There are 

no other records; we have to get some information about Reynolds stress. 

(Refer Slide Time: 45:41) 

 

Now, how do you get the Reynolds stress equation? It is a basically second order 

quantity; we have written down the equation here for the fluctuation itself. So, I could 

write it in terms of in a tensor notation form. So, what we are talking about then let me 

just clean up this bit and then we see, if we write it in terms of tensor notation, then I 

would perhaps write let us say the ith component; then I will write del vi del t plus Uj del 

del xj operating on vi; that is this term. 

What about this term? This term also I will write vj del del xj operating on, say we are 

writing it for the ith component, so here also I will write here as Ui. What about this 

term? (Refer Slide Time: 46:26) Well, this term is going to be vj del del xj and this is 

operating on vi; that is that and on the left hand side, I will have, basically I will write 

this as 1 over rho del p prime del xi. We are writing the ith component equation and from 

here, we will write nu times delta square vi. So, this is your ith component of the 

fluctuating quantity. 

Now, let us try to write out an equation for Reynolds stress. So, what I do? I multiply this 

equation by let us say vj. So, basically what I am going to do? Well, let me just, to avoid 



conflict, let me write here this repeated index by some other notation, so that we do not 

have a conflict here. So, what I do is I can multiply this vj and then we time average 

because we want to get an information on the time average quantity. So, if I do that, of 

course, I am going to get this as vj del vi del t; then we have vj and Uk del del xk of vi. 

So, that is what we have. 

And from here, we will have vj vk del Ui del xk and here we will get vj vk del vi del xk 

and here we will write vj by rho del p prime del xi and here we will write nu times vj del 

square. Now, what we are going to do? We are going to time average this equation. Now, 

what we are going to get? This term can be written in terms of del del t of vi vj minus 

some term; so I can get that; so I probably can contrive it to write it like this del del t of 

vi vj minus say vi del vj del t. This I could write it like this; is not it? I could do this 

similar things, but when I actually now time average this equation, again we will talk 

about this term will give us what? 

This term will not go away; that will tell you how the time average of vi ;vj changes its 

time; so we will have to talk about this time average minus this time average and this 

will be let us say the mean flow is given to us, but still will have to be performing this vj 

Uk del vi del xk. Now, this also would coming here like this vj vk del Ui del xk. But look 

at this term; here we have vj vk del vi del xk. So, I will have those other terms written on 

the right hand side. So, in writing down an evolution equation for the second moment; so 

vi vj is the second moment. If I do that, I see immediately that here I have a triple 

product term coming here. 



(Refer Slide Time: 51:43) 

 

So, what is happening here that in writing a equation for the second moment, we need 

information on the third moment. So, it is not very happy situation that when I am 

looking for the first moment equation, that is what our RANS equation was; is not it? So, 

in writing the RANS equation, we had understood the need for modeling; the second 

moment that is a Reynolds stress equation and when I try to write down an equation for 

Reynolds stress I need to get information on triple correlation term. 

So, this is what is called as a turbulence closure problem. At whatever level you look at, 

you will have always something which is not known at the higher level. So, you know 

for long long time, specially people emphasizing on the experimental aspect of turbulent 

flows, they kept on measuring various moments of turbulent flows with the hope that 

after some level those higher order correlation terms are not going to be important. So, 

you could stop at somewhere and then you do not have this problem of turbulence 

closure problem because it gets over. Suppose, at this level suppose I could have said this 

term is 0, then my problem is solved. I have been able to write out an equation for triple 

correlation term. 

But it is not possible. In fact you would note that there is a major activity in turbulence 

modeling that people do write down this equation for Reynolds stress directly and try to 

solve this equation, but please do mind remember that in writing those equations for this 

triple correlation term, they need to do some kind of modeling. So, it is not apriori that 



you are going to do; completely get an analytic solution; you will have to do some kind 

of empiricism, some kind of modeling or take help of some experimental input to close 

the problem. But otherwise, turbulence remains stubborn because of this closure 

problem; it never disappears. So, that is what we note that if we want to make any 

progress, some closure of the hierarchy must be introduced. This is what is attempted in 

most of the turbulence model and what is interesting is people do not want to go into 

third order terms itself, but be happy with the Reynolds average equation itself and then 

try to relate Reynolds stress with the mean strain itself. This is something that we need to 

touch upon next, when we meet tomorrow. Stop there. 

 


