
Instability and Transition of Fluid Flows 
Prof. Tapan K.Sengupta 

Department of Aerospace Engineering 
Indian Institute of Technology, Kanpur 

 
Module No.# 01 
Lecture No. # 34 

 

(Refer Slide Time: 00:21) 

 

We are going to discuss about POD analysis that we had done. I am afraid, you will have 

to go through with me, the small letters here. What we are trying to do here is, to use 

POD as a tool to investigate instabilities. That is a new direction that we have given to 

the subject over the last couple of years and I discussed about, specifically, flow 

instability for flow past a cylinder. It is a bluff body flow that you have studied. 
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Now, we are trying to ratchet up the difficulty to one level more. Today, we are going to 

talk about another flow; it is an internal flow. So, we have discussed about an external 

flow; today, we are going to talk about an internal flow, and then show that, the modes 

that we talked about, we talked about three classes of modes, if you recall; we talked 

about the regular modes; then, we talked about those anomalous modes and there, we 

talked about the first kind and the second kind, for flow past a cylinder. Now, we are 

going to see, are these generic enough to be visible in other flows also. 
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So, what we have done, we have taken to study the same thing for an internal flow. This 

is the, basically, a lid driven cavity problem. So, a lid driven cavity problem is shown 

here. What we are going to show you here, a picture that will demonstrate what is going 

to happen here. We will go through the same process of solving the Navier-Stokes 

equation and get those solutions, then, obtain the instantaneous flow; then, you obtain the 

mean flow and then, basically, calculate the disturbance flow. And, once you have the 

disturbance flow, you obtain those Galerkin projection that we are seeing, and this is 

driven cavity program is. What you have here is, a basically, a square cavity here. The 

flow is set up by moving the top lid from left to right at a constant speed u and then, we 

focus our attention on three representative points marked here is as p; p is a top most 

right corner point and q is this bottom most right point and r is over here. 

Now, what you notice is, depending on where you focus your attention, you see a 

different time evolution of this disturbance vorticity, as a function of time. However, the 

common feature is almost the same; that you start off with a semi-quiescent stage which 

is perturbed by linear instability and that linear instability is modulated by nonlinearity. 

That is the typical picture that you saw. What is the essential difference between this 

flow and the flow past a cylinder? Here, the initial flow is very chaotic; in case of a flow 

past a cylinder, flow was completely steady. So, we saw the instability was building up 

on a steady flow. And here, the linear instability is building up on a very transitory flow; 

it is, it is showing very massive transients. If you look at the other point q, q is one of 



those corner vortices, that is (( )) vortices that we call, and even there, you are seeing, the 

disturbance growing with time. 
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But at the same time, the mean is shifting; recall, we talked about those shift modes. This 

was what we called as a shift mode. So, here also, we are seeing the same kind of thing, 

that the mean is shifted, but overriding that mean, you have the fluctuation that grows 

linearly and nonlinearly saturates. And, this is this point, which is outside this corner 

vortices, which also displays the same thing. 
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In a sense, what we are talking about here is the same type of behavior that we saw. Let 

me show you, what we are going to see. If we now obtain the equilibrium amplitude and 

plot it as a function of Reynolds number, then, what we are going to get is the 

equilibrium amplitude versus Re for this lid driven cavity problem. And, it is not a purely 

parabolic profile as Landau equation would have demanded, but instead, you are going to 

get this equilibrium amplitude to fall on various polynomials. And, that in concert with 

what we have talked about earlier, we talk about multiple Hopf-bifurcation and different 

Reynolds numbers are noted here. As you can see, the first one is around 7933; the 

second one is at 8187 and the third one that we have shown here is 9933. 

So, essentially, for flow past a cylinder, that is depicted here and the corresponding 

experimental results by Strykowski is shown here. You do get to see a, exactly similar 

phenomenon, that it is not purely given by the Landau equation; it falls on various 

branches of bifurcation; and, this lends credibility to what we have been talking about 

this, in terms of universality of this kind of instability modes. And, this was the result 

that I told you about Strykowski’s experiment and there is one set of data here, another 

set of data here. 
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So, this is not something that is construct of a computations; it does come out from 

experimental viewpoint also. If you look at the Eigen modes for this driven cavity 

problem, you can go through that. Remember, we have shown the disturbance vorticity 



in the Galerkin set up. It is time dependent amplitude a m of t times phi m of x. So, space 

time dependence has been split up and if you perform the POD analysis, this Eigen 

functions are plotted here. So, these are your Eigen functions. This is the first mode. This 

is the second mode. They appear pair-wise, as you can see, the solid line and dotted line 

will toggle you between the positive and negative vorticity; and you can see that same 

structure you talk about, there is a core and there is a main satellite and there are the 

secondary ones. 
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This is your anomalous mode of the first kind, the shift mode that we talked about, which 

appears singly; this has got no pair formation. Then, of course, that we mean that, if I am 

calling it 3, 4 would be the missing one. 
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So, this we have fifth and sixth; again we have a seventh isolated one; this is also shift 

mode or anomalous mode of the first kind or t 1 modes that we talked about. Now, these 

are two pairs, but they belong to this t 2 kind. And, how do we know, you have to plot 

the amplitude functions. We will have to plot a m of t and once you do that… Here are 

the pictures a 1 and a 2, as you can see, is plotted here. They do, indeed, follow like 

Landau equation; that is why you call it a regular mode. And, this is your mean zero line 

and you are seeing the fluctuations. We have the third mode here, which was that shift 

mode, which appears singly, and you can see that is, that it does not start off from 0 like 

a flow past a cylinder, because of the stronger transient nature of the flow, to begin with. 

So, it starts off with some value, but it does go and settle down eventually there. This is 

another regular mode, pair. You can see, during the transient state, they do not have the 

pure orthogonality a kind of, that you expect from POD modes. POD modes are 

supposed to be orthogonal, but they do not remain so. 

So, it is very instructive for one to understand, what is going on here. Our aim is to take a 

very stochastic system and project it on a deterministic basis. And, if we do that, if we 

are getting a perfectly deterministic basis, those have to be orthogonal; 1 and 2 seem to 



show that. If you look at 5 sand 6, to begin with, they are not orthogonally related; 

despite that, as instability takes over and nonlinearity saturates, you do actually end up 

getting a orthogonality. So, in contrast, we have this shift mode, or the anomalous mode 

of the first kind, the third and the 7, that is what we are seeing here. And, I told you 

about the ninth and tenth, and they are, (( )). So, ninth and tenth and eleventh and twelfth 

modes, they look like this. And, this mode amplitude will grow, as you would see, in a 

wave packet and this is what we are seeing here. So, that is the way to go about. You do 

the singular value decomposition of the correlation matrix; you get the Eigen values, that 

also gives you an idea of pair formation etcetera; then, you look at the Eigen functions, 

that gives you some additional information about it. 
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But whether they are truly going to give you this sort of classification into regular and 

anomalous modes or not, will be very clearly brought out, when you take a look at that 

amplitude function a m of t. So, this is a three step procedure; you cannot just simply 

look at one set and comment about it. One thing you must realize also, though that 

people in performing POD have not been cautious enough, you are doing direct 

simulation here. You may be doing the same thing in an experimental frame work. But 

then, when you are trying to do POD, what is its sampling rate is going to be? That is a 

very vital question and that is why I think, rest of the world has really not done the home 

work properly. Because, if I am doing, a kind of, a sampling of a time dependent 

function, then, I have to do it properly, to capture the appropriate frequencies. Most of 

the time, people may be doing high fertility calculations, but when it comes to POD 

modes, they have been niggardly; they take far fewer frames. And then, the moment you 

decide upon the sampling rate of POD analysis, that restricts you to what you are seeing. 

And, this kind of simulations have been done to pick up this kind of frequencies. 

If I would have taken, here, we have shown it from 200 to600. So, here, the time interval 

is about, sampling rate is the order of about 0.01 and 0.02, that kind of a thing. So, you 

can imagine the volume of data, that you will have to handle to do a POD and if you do 

not do it, you will not pick up all this frequencies. 
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So, you must pay heed to the requirement of resolution and this is a very vital issue, that 

we must talk about. Now, these are some of the things that, we have seen for our circular 

cylinder. So, there is no question about it and these were also the, sort of a mode shape 

that we have seen for flow past a cylinder. We have seen that, the regular modes here, 1 

and 2; then, we have the shift mode; then we have another set of regular mode. This is a 

very interesting thing that, in the end, you get, to a regular mode, but in the transient 

phase, once again, they are dissimilar; the individual component, they are dissimilar. 

Same thing over here. Should we call it a kind of a t 2 mode or it is a kind of a admixture 



of a t and r mode. We need to understand that, these elements are the basic ingredients. 

Whatever we are seeing at the end of the day, is basically, a kind of a mixture of all this 

things that we see. 

(Refer Slide Time: 16:24) 

 

Now, this is what you are going to get, when you look at the DNS of that internal flow. 

And, here also, you can notice that, despite the talk of universality, there is some bit of 

difference in behavior of the successive modes at different locations. 

But by and large, you can really capture the events that we are noticing, essentially that 

linear instability, followed by non-linear saturation and mode behaviors belonging to 

either of these three generic classes. 
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I suppose, one can go ahead and do all this. These are those mode shapes for cylinders. I 

think, what we are essentially looking at, this is a mode shape for flow past a cylinder at 

Reynolds number of 60 and again, you can see, this two are those regular modes; this is 

the t 1 mode and this is t 2 mode and so on, so forth. So, you can study this, as sort of a, 

universal building blocks. 
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So, I will close the discussion here on POD analysis. I suppose, you have seen quite a bit 

of variations. Now, we go to the last phase of our course and that is basically, talking 

about turbulence. So, if you look back, flow that we see in nature or in engineering 

devices, most of the time they are going to be turbulent. Despite the fact that, this part is 

considered to be a special topic in studies of fluid mechanics, but it is a, sort of a 

interesting thing, because this is not the exception; this is the rule; all flows are turbulent, 

but very little attention is paid to it. There are various reasons for it, because, we still do 

not understand what turbulence is. And, there are no precise definitions of turbulence. 

There are lots of people who can rattle away strings of sentences, turbulence is this, 

turbulence is that, etcetera; they essentially, tell you about the characteristics of most of 

the turbulent flows. I am going to talk about some of those characteristics, one by one. 

But please, do not misquote me by saying, turbulence is irregular flows; just one of it; it 

is not going to be adequate. The flow behavior, if you look at it, whether you are looking 

in space or in time, you would see that, there would be a sort of apparent dichotomy in 

showing that, there is a lack of coherence. What you see is, basically is, some kind of a 

randomness, or it is, if I look at its time variation, it is going to look like chaotic. I 

purposely wrote this word chaotic in the sense that, chaos dynamics was a topic of 

intense studies in, starting from 70s, upto probably, even now; today, lots of people try to 

study lot of aspects of chaos dynamics, although it started off in some of the work done 

by fluid dynamicists in trying to explain turbulence; it does not fulfill its promise in 



defining turbulence; because, what happens is, irrespective of this randomness and chaos 

that we try to characterize turbulent flow with, people know, turbulent flow, in its 

underlying features have some kind of deterministic structure. And, you are really ready 

to appreciate that point of view, because that is what we have done with our POD 

analysis that, we will take a completely a stochastic dynamical system and project it on 

to a deterministic basis.  
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So, those deterministic basis are called coherent structures of turbulence. That is why, 

people may like to study turbulence using statistical method or they may like to study in 

a dynamical system frame work, like what we have just now done. So, irregularity is one 

of the feature of turbulent flow. There is this other feature, its diffusivity. If you go back, 

when we were discussing about bypassed transition caused by those convecting vortex in 

the free-stream, what did we see in those flow visualization picture. 
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The dye that was coming out nice and straight got diffused. There was a significant 

increase in mixing or diffusion. So, whenever you see turbulence, you must understand, 

there is a enhanced mixing process, that is characterized mathematically by the process 

of diffusion. So, diffusivity is very important in turbulence. They represent rapid mixing 

in terms of all quantities of interest. There could be mass diffusion; if I add in a sort of a 

dye and it gets mixed to the adjoining fluid, it is a mass diffusion. At the same time, 

when I see a flow and the shear layer developing, then, flow is undergoing transition and 

it becoming turbulent and I see thickening of the boundary layer. 

So, the mixing is occurring over a larger wall normal distance. That is what we are 

talking about enhanced mixing of momentum. And, when mass and momentums are 

transferred, you have to understand, that would lead to energy transfer too. What you 

need to understand that, if you did not have the turbulence, then, the boundary layer, the 

shear layer would have grown and that mechanism was given by kinematic viscosity, the 

molecular viscosity. So, molecular viscosity, is like one layer of fluid going over the 

other and then, they are transferring momentum in orderly fashion, from one to the other, 

in a macroscopic sense; but in a microscopic sense, you can think of, in terms of those 

molecules, or the constituent particles exhibiting rapid variations; but in a macroscopic 

sense, they are still very regular. 



However, when you have turbulent flow, even at the macroscopic level, you are going to 

see a massive increase in diffusivity. So, if I try to characterize my turbulent flow in 

terms of a diffusivity coefficient, that coefficient of diffusion has to be significantly 

higher than what you get in laminar flows. So, this is one attribute which is very stronger 

than your molecular diffusivity. This is something very important. And, unfortunately 

this point of view also is the motivation, to describe turbulence in terms of a diffusivity 

coefficient. That is what is, goes by the name of any diffusivity, that is modeled most of 

the time and turbulence models. 

But do not try to understand, like, in the name of engineering fluid mechanics, lots of 

people understand turbulence in terms of coefficients of turbulence models. That is far 

from the truth. This is one of the attribute of turbulence, that you do have enhanced 

diffusivity; that eddy diffusivity is associated with the eddies, you are going to see in a 

turbulent flow, is a multiple presence of eddies of different sizes. So, you have a 

hierarchy of sizes of eddies. So, this is what is called as eddy diffusivity. So, different 

size eddies interact with each other and we have seen from the Navier-Stokes equation 

that, the non-linear term and the convection part, helps you do that through the process of 

cascading. 

We will talk about it and get a detail as we go along. There is the other thing, that is very 

typical of turbulent flows. You would hardly ever get turbulent flows, which is occurring 

at low Reynolds number. Whenever we are talking about turbulent flows, we are talking 

about turbulence that is generated by some mechanism, and which is also self-sustaining. 

Remember, that experiment that we have seen, when we dragged a single vortex, what 

happened, when we removed the vortex, things again came back to normal; would I call 

that a generic turbulence? No, because that is more like, your forced vibration, but when 

we are talking about turbulence, we are more like, talking about a natural vibration. 

So, it is self-sustaining; it should be there and that kind of self-sustenance comes about, 

when your basic equilibrium flow is unstable. So, instability is the core of everything. 

See, that is why in this course, (( )) title transition and turbulence; I had spent most my 

time, talking about the transition aspect. With the twin object, one is, all this 

phenomenon are instability driven, and number two is, to basically fight the ghost of the 

commonly helped perception that, turbulence is universal. So, it does not matter how you 

get there; it will all be given by single model, which is not true. We firmly believe that, 



they are all multiplicity and the point of view of the turbulent flow itself and what end 

product you get, depends on which route you have traversed, and which are the routes, 

these are the routes of instabilities.  

So, the instabilities will be characterized, only when you have large Reynolds number. If 

we have low Reynolds number flow, we can excite the flow, but it may not sustain itself. 

Once I remove the source of disturbance, it quietens down; but if I go to high Reynolds 

number flows, which are unstable, then once I get it started, it will be there or I do not 

have to get it started; the small back ground disturbances are good enough to trigger it. 
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So, this is something that we understand that, large Reynolds number is a necessary 

condition, not a sufficient one, to tell you that, all large Reynolds number flow will have 

to be a turbulent flow; but the propensity of setting up turbulence, is very much there, 

when the Reynolds numbers are high. There is the other aspect of turbulence that, we 

must keep in mind. This has to do with the way we look at Navier-Stokes equation. 
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If I write down the Navier-Stokes equation, then, we can understand the basic processes. 

The basic processes are very clearly understood. This is the local acceleration at any 

point, if I look at what the time rate of change of events occurring, that is given. This is 

your convective acceleration. This is the way, let us say, the pressure is driving the flow; 

you may have it or you may not have it. Of course, this is the viscous diffusion. Of all 

the terms that you see, this plays quite an interesting role; this is your non-linear term. 

If you are a mathematician, you would say it is a quasi-linear term, because the highest 

derivative is second and that is why it is linear; but this is a non-linear term, that plays a 

significant role in determining the dynamics. We have already seen that, all instabilities 

do start off from here. If you recall, we have written down the Navier-Stokes equation in 

rotational form. I can write it down in terms of v cross omega and gradient of v square by 

2. If the flow is irrotational, that term will go away. So, what the non-linear term is 

doing, just simply redefining the pressure, the p by rho plus half v square. That is what 

we see, what we are talking about the role of rotationality. 
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So, if I do not have rotationality, nonlinearity does not differ much; it just simply 

redefines the pressure. So, rotationality is central in understanding turbulence and three 

dimensionality is written down when you take a curl of this and then, you get the 

vorticity transport equation. So, you take a curl and then, you get the vorticity transport 

equation. How does it look like? So, this is vorticity transport equation. Look at this and 

understand what each of this term is doing. This term is rather important. This is called 

as vortex stretching term. You can very clearly see that, this term will be identically 

equal to 0, for two dimensional flow, because your flow gradient will be in x y plane; 

omega is in the normal direction, so, z direction; so, omega dot del is 0 identically. This 

vortex stretching is only for 3 D flows; for 2 D flows, it is identically equal to 0. You can 

understand that, vortex stretching will only be there for 3 D flows and not for 2 D flows. 

And, this is what has the perplexed our fluid dynamics community for last half a century. 
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So, this tells us, when this is going to be important. So, vortex stretching will not be there 

for two dimensional flow. What does vortex stretching do actually in a real flow, that 

you would understand, when you look at the energy spectrum. And, if I plot the energy 

spectrum of a typical flow, inhomogeneous flow, it would be like this. This way, that the 

energy is being transferred from small k to large k, one of the mechanism that can do is 

vortex stretching. 
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So, this, when you see this slope as k to the power of minus five third, this was shown by 

(( )) that, that can only happen corresponding to vortex stretching. So, that is what we are 

talking about that, if we look at turbulent flows, they are always characterized by three 

dimensional vortical fluctuations. Vorticity dynamics plays a central role in all fluid 

mechanics, more so, for turbulent flows, because, we have defined the turbulence as an 

ensemble of eddies of different kinds. 
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So, eddies means vorticity, circulation. So, vorticities dynamics has to play a central role. 

And then, this non-linear process of vortex stretching, transfers the energy from small k 

to large k; that means, it is basically, siphoning off the energy from larger to smaller 

eddies. 
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If I do not have this vortex stretching, I would not have a powerful mechanism by which 

the energy will be transported from larger to smaller eddies. But please do understand, a 

very large part of the sky is dominated by 2D turbulence. Nothing exemplifies better than 

the atmospheric dynamics. I will show you some results, as we go along. When you look 

at the atmospheric data, we will see that, this energy spectrum is not given by k to the 

power of minus five third, but it is given by K to the power minus 3. 

This is an attribute of 2D turbulence. All the people used to think, 2 D turbulence is a 

sort of anachronism; it was just studied for the sake of study; but lots of the people are 

waking up to the reality that, you can have 2D turbulent flows. And, Kraichnan did 

some, lots of pioneering work in this; one of the Post Doctoral student of Einstein 

working on turbulence was Bob Kraichnan. He had done lot of work. The 2 D turbulence 

is characterized by K to the power minus 3. It is also characterized by a physical process, 

where smaller eddies goes and merges together and forms bigger one. This is called as 

inverse cascading. So, this process that we are seeing here, is called as cascading of 

energy. But 2 D turbulence displays, what is called as inverse cascade. See, conceptually, 



this picture is not difficult to visualize, because we have small eddies joining up together; 

it happens all the times; it is nothing very sacrosanct. 
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But mathematically, it was shown that, when you have 2D turbulence, one of the 

attributes of that, is this. And, we are open to ideas of 2D turbulence, as evidenced 

plentifully in atmospheric dynamics will show that. Vorticity intensification and three 

dimensionalization is possible via vortex stretching, a mechanism that is possible only 

for 3D flows. 
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You have already noted certain things, where different scales can come about. For 

example, think of Kelvin-Helmholtz instability. I have a uniform flow on top and 

uniform flow at the bottom; there is an interface; this interface is disturbed by some 

background disturbances, and this interface curls up into vortices. So, that is, basically, a 

direct mechanism of creating vortices of various sizes. It was possible, more so, for a two 

dimensional flow than three dimensional flow; we established it. 2 D flows are more 

prone to Kelvin-Helmholtz instabilities than 3 D flows, remember. 

So, sometimes, this 3D card is overplayed, but we need to understand, there are many 

instances; this is one of such things. And, what was so important about Kelvin-

Helmholtz instability is, that it was an inviscid mechanism. So, you do not need to have 

the presence of elaborate viscous mechanism to show up the instability; you can directly 

get it from a two dimensional flow; you have the shear. So, shear is synonymous with 

viscous phenomenon, but we are talking about the disturbance growth mechanism. That 

could be completely inviscid mechanism. That is one thing, we must understand. 
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We already talked about inverse cascade. So, we do see that, and we have already said 

that, spectral distribution of 2D turbulence is qualitatively different than what you get in 

3D flows. And, one of those central theme of this course, as we have talked about, is the 

phenomenon of dispersion. Dispersion is a very strong mechanism by which different 

scales can be created. Remember, we talked about those train of vortices going over 

shear layer. So, I may be defining a length scale which is given by the spacing of the 

successive vortices. 
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However, because of the dispersion relation, I could create a whole host of length scale. 

So, do not be too much, be taken up, by thinking only about vortex stretching and 

nonlinearity; those instabilities are linear instability. So, the linear mechanism itself can 

give you a whole host of length scales. 
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So, we must be aware of this. Now, this is a phenomenon logical observation that, 

turbulent flows are more dissipative. You ask an airline operator; they will complain till 

their face turned blue that, they spend all the money, because flow is turbulent. They 

would love to have laminar flow; that is because, we have very high dissipation in 

turbulent flows. We have very high dissipation and that is not very unusual for us to 

understand; we already have talked about diffusivity. If I have larger diffusivity, I will 

have the larger dissipation. Physically trying to understand what happens, if I have a 

laminar flow, I will have a thinner shear layer. So, this transition from a no slip wall to 

the fully developed flow, is occurring over a thinner section. However, if I now set in 

motion, turbulence, this will be can thicker. 

I just create a very stronger motion in a macroscopic scale, which is random. Turbulence 

is randomness in a macroscopic scale. You have randomness at the microscopic scale 

even for laminar flow, but turbulence is special that, it brings in the randomness at the 

macroscopic level. That is what is something, that we need to understand. 



The moment I remove orderliness, I bring in randomness. Then, from your 

thermodynamics knowledge, you will say, internal energy is increasing. So, earlier, flow 

was spending all its energy going along the stream-wise direction; now, we have created 

motions in all possible directions. So, you have actually, lost lot of ordered kinetic 

energy and got it into internal energy. This disorganized energy increase, implies large 

irreversibilities; that is why your entropy increases. So, such transformations, needless to 

say, will imply dissipation 

So, in fluid flow, orderliness is laminar motion, carrying motion which is coherently 

directed, but the moment you bring in turbulence, you have a additional source of 

entropy production, loss of orderliness, that leads to larger dissipation. Having said all of 

this, and we have already emphasized this, turbulence occurs at macroscopic scale. Do 

not ever be deceived by thinking that, it is a molecular phenomenon; it is not. You still 

view the flow as a continuum; you do not have to approach the study of turbulence by 

looking at microscopic level. 
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So, you look at it as a macroscopic level; the flow is a continuum. If I look at the energy 

spectrum, it just goes, somewhere there, it just stops. So, it has a finite cutoff wave 

number. So, if I call that as k cutoff, this k cut off corresponds to a length scale. That 

lengths scale is many times larger than mean free path in gas flows or the molecular 

scale for liquid flows. 
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So, they are not something, manifestation of your flow phenomenon at the molecular 

level. It is basically happening at the macroscopic level. So, let us try to understand the 



dynamics of turbulence and this is what we would be talking about in greater detail in the 

next class. Today, I will just simply say that, now, whatever the attributes that we have 

talked about, let us say, the velocity field, if I write it as u, it is going to be a function of 

space and time; you cannot have a steady turbulent flow. 

So, please do get away from the habit of calculating turbulent flows by time averaged 

equation, and think that, the flow is steady. So, that is something, we must understand 

that, u will be a function of x and t; governing equation will be given by the, if I am 

talking about incompressible flow, it will be given by momentum conservation and mass 

conservation. We will start from here in the next class. f that you are seeing here, we are 

purposely kept a body force, which could itself be time independent or there could be 

other sources of bringing in time dependence from this equation. We have seen 

instability is one such mechanism. We saw that, a unidirectional flow coming and then, it 

is becoming time dependent; but a body force will keep it as it is, for the whole domain. 

And, non-steadiness can come from the boundary conditions also. If the domain is 

omega the boundaries del of omega.  


